Quintuple product identity explained
In mathematics the Watson quintuple product identity is an infinite product identity introduced by and rediscovered by and . It is analogous to the Jacobi triple product identity, and is the Macdonald identity for a certain non-reduced affine root system. It is related to Euler's pentagonal number theorem.
Statement
\prodn\ge(1-sn)(1-snt)(1-sn-1t-1)(1-s2n-1t2)(1-s2n-1t-2)=\sumn\in
(t3n-t-3n-1)
References
- Foata, D., & Han, G. N. (2001). The triple, quintuple and septuple product identities revisited. In The Andrews Festschrift (pp. 323–334). Springer, Berlin, Heidelberg.
- Cooper, S. (2006). The quintuple product identity. International Journal of Number Theory, 2(01), 115-161.
See also
- Hirschhorn–Farkas–Kra septagonal numbers identity
Further reading
- Subbarao, M. V., & Vidyasagar, M. (1970). On Watson’s quintuple product identity. Proceedings of the American Mathematical Society, 26(1), 23-27.
- Hirschhorn, M. D. (1988). A generalisation of the quintuple product identity. Journal of the Australian Mathematical Society, 44(1), 42-45.
- Alladi, K. (1996). The quintuple product identity and shifted partition functions. Journal of Computational and Applied Mathematics, 68(1-2), 3-13.
- Farkas, H., & Kra, I. (1999). On the quintuple product identity. Proceedings of the American Mathematical Society, 127(3), 771-778.
- Chen, W. Y., Chu, W., & Gu, N. S. (2005). Finite form of the quintuple product identity. arXiv preprint math/0504277.