Wallis product explained

The Wallis product is the infinite product representation of :

\begin{align} \pi
2

&=

infty
\prod
n=1
4n2
4n2-1

=

infty
\prod\left(
n=1
2n
2n-1

2n
2n+1

\right)\\[6pt] &=(

2
1

2
3

)(

4
3

4
5

)(

6
5

6
7

)(

8
7

8
9

)\\ \end{align}

It was published in 1656 by John Wallis.[1]

Proof using integration

Wallis derived this infinite product using interpolation, though his method is not regarded as rigorous. A modern derivation can be found by examining

\pi
\int
0

\sinnxdx

for even and odd values of

n

, and noting that for large

n

, increasing

n

by 1 results in a change that becomes ever smaller as

n

increases. Let[2]

I(n)=

\pi
\int
0

\sinnxdx.

(This is a form of Wallis' integrals.) Integrate by parts:

\begin{align} u&=\sinn-1x\\ du&=(n-1)\sinn-2x\cosxdx\\ dv&=\sinxdx\\ v&=-\cosx \end{align}

\begin{align} I(n)&=

\pi
\int
0

\sinnxdx\\[6pt] {}&=-\sinn-1x\cosx

\pi
l|
0

-

\pi
\int
0

(-\cosx)(n-1)\sinn-2x\cosxdx\\[6pt] {}&=0+(n-1)

\pi
\int
0

\cos2x\sinn-2xdx,    n>1\\[6pt] {}&=(n-1)

\pi
\int
0

(1-\sin2x)\sinn-2xdx\\[6pt] {}&=(n-1)

\pi
\int
0

\sinn-2xdx-(n-1)

\pi
\int
0

\sinnxdx\\[6pt] {}&=(n-1)I(n-2)-(n-1)I(n)\\[6pt] {}&=

n-1
n

I(n-2)\\[6pt]

I(n)
I(n-2)

&=

n-1
n

\\[6pt] \end{align}

Now, we make two variable substitutions for convenience to obtain:

I(2n)=

2n-1
2n

I(2n-2)

I(2n+1)=

2n
2n+1

I(2n-1)

We obtain values for

I(0)

and

I(1)

for later use.

\begin{align} I(0)&=

\pi
\int
0

dx=

\pi
xl|
0

=\pi\\[6pt] I(1)&=

\pi
\int
0

\sinxdx=-\cosx

\pi
l|
0

=(-\cos\pi)-(-\cos0)=-(-1)-(-1)=2\\[6pt] \end{align}

Now, we calculate for even values

I(2n)

by repeatedly applying the recurrence relation result from the integration by parts. Eventually, we end get down to

I(0)

, which we have calculated.
\pi
I(2n)=\int
0

\sin2nxdx=

2n-1
2n

I(2n-2)=

2n-1
2n

2n-3
2n-2

I(2n-4)

=2n-1
2n

2n-3
2n-2

2n-5
2n-4

5
6

3
4

1
2

I(0)=\pi

n
\prod
k=1
2k-1
2k

Repeating the process for odd values

I(2n+1)

,
\pi
I(2n+1)=\int
0

\sin2n+1xdx=

2nI(2n-1)=
2n+1
2n
2n+1

2n-2
2n-1

I(2n-3)

=2n
2n+1

2n-2
2n-1

2n-4
2n-3

6
7

4
5

2
3

I(1)=2

n
\prod
k=1
2k
2k+1

We make the following observation, based on the fact that

\sin{x}\leq1

\sin2n+1x\le\sin2nx\le\sin2n-1x,0\lex\le\pi

I(2n+1)\leI(2n)\leI(2n-1)

Dividing by

I(2n+1)

:

1\le

I(2n)
I(2n+1)

\le

I(2n-1)=
I(2n+1)
2n+1
2n
, where the equality comes from our recurrence relation.

By the squeeze theorem,

\limn → infty

I(2n)
I(2n+1)

=1

\limn → infty

I(2n)=
I(2n+1)
\pi
2

\limn → infty

n
\prod\left(
k=1
2k-1
2k

2k+1
2k

\right)=1

\pi
2
infty
=\prod\left(
k=1
2k
2k-1

2k\right)=
2k+1
2
1

2
3

4
3

4
5

6
5

6
7

See the main page on Gaussian integral.

Proof using Euler's infinite product for the sine function

While the proof above is typically featured in modern calculus textbooks, the Wallis product is, in retrospect, an easy corollary of the later Euler infinite product for the sine function.

\sinx
x

=

infty\left(1
\prod
n=1

-

x2
n2\pi2

\right)

Let

x=

\pi
2
:

\begin{align}

2
\pi

&=

infty
\prod
n=1

\left(1-

1
4n2

\right)\\[6pt]

\pi
2

&=

infty
\prod\left(
n=1
4n2
4n2-1

\right)\\[6pt] &=

infty
\prod\left(
n=1
2n
2n-1
2n
2n+1

\right)=

2
1

2
3

4
3

4
5

6
5

6
7

\end{align}

   

Relation to Stirling's approximation

Stirling's approximation for the factorial function

n!

asserts that

n!=\sqrt{2\pin}{\left(

n
e

\right)}n\left[1+O\left(

1
n

\right)\right].

Consider now the finite approximations to the Wallis product, obtained by taking the first

k

terms in the product

pk=

k
\prod
n=1
2n
2n-1
2n
2n+1

,

where

pk

can be written as

\begin{align} pk&={1\over{2k+1}}

k
\prod
n=1
(2n)4
[(2n)(2n-1)]2

\\[6pt] &={1\over{2k+1}}{{24k(k!)4}\over{[(2k)!]2}}. \end{align}

Substituting Stirling's approximation in this expression (both for

k!

and

(2k)!

) one can deduce (after a short calculation) that

pk

converges to
\pi
2
as

kinfty

.

Derivative of the Riemann zeta function at zero

The Riemann zeta function and the Dirichlet eta function can be defined:

\begin{align} \zeta(s)&=

infty
\sum
n=1
1
ns

,\Re(s)>1\\[6pt] η(s)&=(1-21-s)\zeta(s)\\[6pt] &=

infty
\sum
n=1
(-1)n-1
ns

,\Re(s)>0 \end{align}

Applying an Euler transform to the latter series, the following is obtained:

\begin{align} η(s)&=

1+
2
1
2
infty
\sum
n=1

(-1)n-1\left[

1-
ns
1
(n+1)s

\right],\Re(s)>-1\\[6pt] η'(s)&=(1-21-s)\zeta'(s)+21-s(ln2)\zeta(s)\\[6pt] &=-

1
2
infty
\sum
n=1

(-1)n-1\left[

lnn-
ns
ln(n+1)
(n+1)s

\right],\Re(s)>-1 \end{align}

\begin{align} η'(0)&=-\zeta'(0)-ln2=-

1
2
infty
\sum
n=1

(-1)n-1\left[lnn-ln(n+1)\right]\\[6pt] &=-

1
2
infty
\sum
n=1

(-1)n-1ln

n
n+1

\\[6pt] &=-

1
2

\left(ln

1
2

-ln

2
3

+ln

3
4

-ln

4
5

+ln

5
6

-\right)\\[6pt] &=

1
2

\left(ln

2
1

+ln

2
3

+ln

4
3

+ln

4
5

+ln

6
5

+\right)\\[6pt] &=

1ln\left(
2
2
1
2
3
4
3
4
5

⋅ … \right)=

1ln
2
\pi
2

\\ \zeta'(0)&=-

1
2

ln\left(2\pi\right) \end{align}

See also

\pi

.

External links

Notes and References

  1. Web site: Wallis Formula.
  2. Web site: Integrating Powers and Product of Sines and Cosines: Challenging Problems.