In mathematics, the Vitali–Hahn–Saks theorem, introduced by,, and, proves that under some conditions a sequence of measures converging point-wise does so uniformly and the limit is also a measure.
If
(S,l{B},m)
m(S)<infty,
λn
λn
m,
B\inl{B}
\limn\toinftyλn(B)=λ(B).
λn
m
n,
\limBm(B)=0
\limBλn(B)=0
n.
λ
l{B}.
Given a measure space
(S,l{B},m),
l{B}0,
B\inl{B}
m(B)<infty.
d(B1,B2)=m(B1\DeltaB2),
B1\DeltaB2=(B1\setminusB2)\cup(B2\setminusB1)
B1,B2\inl{B}0.
\tilde{l{B}0}
B1,B2\inl{B}0
m(B1\DeltaB2)=0.
\overline{B}\in\tilde{l{B}0}
B\inl{B}0
B1\inl{B}0
m(B\DeltaB1)=0.
Proposition:
\tilde{l{B}0}
Proof: Let ThenThis means that the metric space
\tilde{l{B}0}
L1(S,l{B},m)
Let
Bn\inl{B}0
\chi | |
Bn' |
\limn'\toinfty
\chi | |
Bn' |
(x)=\chi(x)
\limn'\toinfty\intS|\chi(x)-\chi
Bn'(x) |
|dm=0
\chi=\chi | |
Binfty |
Binfty\inl{B}0
\chi(x)=1
\chi | |
Bn' |
(x)=1
n'
Binfty=\liminfn'\toinftyBn'=
infty}B | |
{cup | |
m\right) |
\limn\toinftyd(Binfty,Bn)=0.
\tilde{l{B}0}
Each
λn
\overline{λ}n(\overline{B})
\tilde{l{B}}
\overline{λ}n(\overline{B})=λn(B)
B
\overline{B}
λn
m
\overline{λ}n
For every
\epsilon>0
\tilde{l{B}}
\limn\toinftyλn(B)=λ(B)
F | |
k0,\epsilon |
\tilde{l{B}}
\overline{B0}\in\tilde{l{B}}
\delta>0
\supn\geq1
|\overline{λ} | |
k0 |
(\overline{B})-\overline{λ} | |
k0+n |
(\overline{B})|\leq\epsilon
B\inl{B}
m(B)\leq\delta
B=B1\setminusB2
d(B1,B0)\leq\delta
d(B2,B0)\leq\delta
B1=B\cupB0
B2=B0\setminus(B\capB0)
m(B)\leq\delta
k\geqk0
λ | |
k0 |
m
\epsilon
m(B)\to0
λn(B)\to0
n.
m(B)\to0
λ(B)\to0.
By the additivity of the limit it follows that
λ
\limm(B)λ(B)=0
λ