Vectorial addition chain explained

In mathematics, for positive integers k and s, a vectorial addition chain is a sequence V of k-dimensional vectors of nonnegative integers vi for -k + 1 ≤ is together with a sequence w,such that

vi =vj+vr for all 1≤is with -k+1≤j, ri-1

vs = [''n''<sub>0</sub>,...,''n''<sub>''k''-1</sub>]

w = (w1,...ws), wi=(j,r).

For example, a vectorial addition chain for [22,18,3] is

V=([1,0,0],[0,1,0],[0,0,1],[1,1,0],[2,2,0],[4,4,0],[5,4,0],[10,8,0],[11,9,0],[11,9,1],[22,18,2],[22,18,3])

w=((-2,-1),(1,1),(2,2),(-2,3),(4,4),(1,5),(0,6),(7,7),(0,8))

Vectorial addition chains are well suited to perform multi-exponentiation:[1]

Input: Elements x0,...,xk-1 of an abelian group G and a vectorial addition chain of dimension k computing [''n''<sub>''0''</sub>,...,''n''<sub>''k''-1</sub>]

Output:The element x0n0...xk-1nr-1

  1. for i =-k+1 to 0 do yixi+k-1
  1. for i = 1 to s do yiyj×yr
  1. return ys

Addition sequence

An addition sequence for the set of integer S = is an addition chain v that contains every element of S.

For example, an addition sequence computing

is

(1,2,4,8,10,11,18,36,47,55,91,109,117,226,343,434,489,499).

It's possible to find addition sequence from vectorial addition chains and vice versa, so they are in a sense dual.[2]

See also

Notes and References

  1. de Rooij . Peter . Santis . Alfredo De . Efficient exponentiation using procomputation and vector addition chains . 10.1007/BFB0053453 . 389–399 . Springer . Lecture Notes in Computer Science . Advances in Cryptology - EUROCRYPT '94, Workshop on the Theory and Application of Cryptographic Techniques, Perugia, Italy, May 9–12, 1994, Proceedings . 950 . 1994.
  2. Cohen, H., Frey, G. (editors): Handbook of elliptic and hyperelliptic curve cryptography. Discrete Math. Appl., Chapman & Hall/CRC (2006)