In mathematics, Tonelli's theorem in functional analysis is a fundamental result on the weak lower semicontinuity of nonlinear functionals on Lp spaces. As such, it has major implications for functional analysis and the calculus of variations. Roughly, it shows that weak lower semicontinuity for integral functionals is equivalent to convexity of the integral kernel. The result is attributed to the Italian mathematician Leonida Tonelli.
Let
\Omega
n
\Realsn
f:\Realsm\to\Reals\cup\{\pminfty\}
F
u:\Omega\to\Realsm
Then
F
Lp
Lp(\Omega,\Realsm)
1<p<+infty
Linfty(\Omega,\Realsm)
f