Tetrafluoroberyllate Explained

Tetrafluoroberyllate or orthofluoroberyllate is an anion with the chemical formula . It contains beryllium and fluorine. This fluoroanion has a tetrahedral shape, with the four fluorine atoms surrounding a central beryllium atom. It has the same size, charge, and outer electron structure as sulfate . Therefore, many compounds that contain sulfate have equivalents with tetrafluoroberyllate. Examples of these are the langbeinites, and Tutton's salts.

Properties

The Be–F bond length is between 145 and 153 pm. The beryllium is sp3 hybridized, leading to a longer bond than in , where beryllium is sp hybridized. In trifluoroberyllates, there are actually tetrahedra arranged in a triangle, so that three fluorine atoms are shared on two tetrahedra each, resulting in a formula of .

In the tetrafluoroberyllates, the tetrahedra can rotate to various degrees. At room temperature, they are hindered from moving. But as temperature increases, they can rotate around the threefold axis, (i.e. a line through one fluorine atom and the beryllium atom) with a potential barrier of . At higher temperatures, the movement can become isotropic (not limited to rotation on one axis) with a potential barrier of .

Similar compounds have magnesium or zinc in a similar position as beryllium, e.g. (potassium tetrafluoromagnesate) or (ammonium tetrafluorozincate) but these are not as stable.

Tetrafluoroberyllate has a biological effect by inhibiting F-ATPase adenosine triphosphate producing enzymes in mitochondria and bacteria. It does this by attempting to react with adenosine diphosphate because it resembles phosphate. However once it does this it remains stuck in the F1 part of the enzyme and inhibits it from further function.[1]

Simple salts

NameChemical formulaMolar mass (g/mol)CAS numberCrystal systemDensity (g/cm3)Melting point (°C)Solubility in water
(g/(100 ml))
lithium tetrafluoroberyllate98.892.167[2] 472 °C[3] slight (1.25 at 20 °C, 5.78 at 40 °C)[4]
sodium tetrafluoroberyllate130.98533313871-27-7Orthorhombic[5] 2.47575 °Cslight (1.33 at 0 °C, 1.44 at 20 °C, 2.73 at 90 °C)[6]
potassium tetrafluoroberyllate163.207787-50-0orthorhombic a = 5.691 Å, b = 7.278 Å, c = 9.896 Å[7] as for strontium orthosilicate[8] 2.64
potassium tetrafluoroberyllate dihydrate199.233
ammonium tetrafluoroberyllate121.082714874-86-3orthorhombic a = 5.91 Å, b = 7.64 Å, c = 10.43 Å1.71decomposes 280 °C[9] 32.3 at 25 °C[10]
rubidium tetrafluoroberyllate255.941orthorhombic a = 5.87 Å, b = 7.649 Å, c = 10.184 Å3.72
caesium tetrafluoroberyllate350.8167orthorhomic a = 8.03 Å, b = 10.81 Å, c = 0.622 Å4.32
thallium tetrafluoroberyllate493.7724orthorhombic a = 7.7238 Å, b = 5.9022 Å, c = 10.4499 Å6.884
silver tetrafluoroberyllate300.7422
magnesium tetrafluoroberyllate109.3108
calcium tetrafluoroberyllate125.082.959[11]
strontium tetrafluoroberyllate172.6orthorhombic a = 5.291 Å, b = 6.787 Å, c = 8.307 Å3.84insoluble
barium tetrafluoroberyllate222.3334.17insoluble
radium tetrafluoroberyllate[12] 311.005795insoluble
hexaqua ferrous tetrafluoroberyllate[13]
heptaqua ferrous tetrafluoroberyllate1.894
heptaqua nickel tetrafluoroberyllate
hexaqua nickel tetrafluoroberyllate
heptaqua cobalt tetrafluoroberyllate1.867
hexaqua cobalt tetrafluoroberyllate1.891
pentaqua copper tetrafluoroberyllate
heptaqua zinc tetrafluoroberyllate
lead tetrafluoroberyllate292.26.135
hydrazinium tetrafluoroberyllate119.0668a = 5.58 Å, b = 7.337 Å, c = 9.928 Å, α = 90°, β = 98.22°, γ = 90°
triglycine tetrafluoroberyllate312.2212396-72-7monoclinic[14]
ethylene diamine fluoroberyllate[15] decomposes 330 °C
propylenediamine tetrafluoroberyllate[16]
propylene-1,2-diamine tetrafluoroberyllatemonoclinic a = 5.535 Å, b = 13.560 Å, c = 9.6048 Å, β = 106.73 Å, V = 690.4 Å3, Z = 4[17] 1.55
benzidine fluoroberyllateins
tetramethyl ammonium tetrafluoroberyllate
tetramine silver tetrafluoroberyllate[18]
Sodium tetrafluoroberyllate has several crystalline forms. Below 220 °C it takes the same form as orthorhombic olivine, and this is called γ phase. Between 220 °C and 320 °C it is in the α′ form. When temperature is raised above 320 °C it changes to the hexagonal α form. When cooled the α′ form changes to β form at 110 °C and this can be cooled to 70 °C before changing back to the γ form.[19] It can be formed by melting sodium fluoride and beryllium fluoride.[19] The gas above molten sodium tetrafluoroberyllate contains and NaF gas.[20]

Lithium tetrafluoroberyllate takes on the same crystal form as the mineral phenacite. As a liquid it is proposed for the molten salt reactor, in which it is called FLiBe. The liquid salt has a high specific heat, similar to that of water. The molten salt has a very similar density to the solid. The solid has continuous void channels through it, which reduces its density.[3] can be crystallised from aqueous solution using and LiCl.[21]

Potassium tetrafluoroberyllate has the same structure as anhydrous potassium sulfate, as does rubidium and caesium tetrafluoroberyllate. Potassium tetrafluoroberyllate can make solid solutions with potassium sulfate.[20] It can be used as a starting point to make the non-linear optic crystal which has the highest power handling capacity and shortest UV performance of any borate.[22] It is quite soluble in water, so beryllium can be extracted from soil in this form.[23]

Ammonium tetrafluoroberyllate decomposes on heating by losing vapour, progressively forming, then and finally .[20]

Thallium tetrafluoroberyllate can be made by dissolving beryllium fluoride and thallium carbonate together in hydrofluoric acid and then evaporating the solution.[24]

Radium tetrafluoroberyllate is used as a standard neutron source. The alpha particles from the radium cause neutrons to be emitted from the beryllium. It is precipitated from a radium chloride solution mixed with potassium tetrafluoroberyllate.[8]

Magnesium tetrafluoroberyllate can be precipitated from a hot saturated solution of ammonium tetrafluoroberyllate and a magnesium salt.[20] However, if the temperature reaches boiling point is precipitated instead.[25]

Calcium tetrafluoroberyllate resembles zircon in the way it melts and crystallises.[20]

Strontium tetrafluoroberyllate can be made in several forms. The γ form is produced by cooling a melt of and and the β form is made by precipitating from a water solution. When melted and heated to 850–1145 °C, gas evaporates leaving behind molten .[20]

The barium tetrafluoroberyllate is very insoluble and can be used for gravimetric analysis of beryllium.[20]

is an acid that can be produced from and HCl. It only exists in aqueous solution.[20]

Triglycine tetrafluoroberyllate (TGFB) is ferroelectric with a transition point of 70 °C.[26] The crystals can be formed by dissolving in water, adding HF and then glycine. When the solution is cooled triglycine tetrafluoroberyllate forms. and in the solution reduce growth on the 001 direction so that tabular shaped crystals of TGFB form. The thallium compound can cut growth on the 001 axis by 99%.[27]

Double salts

Tuttons salts

The Tuttons salt (NH4)2Mn(BeF4)2·6(H2O) is made from a solution of NH4BeF3 mixed with NH4MnF3.[20] The equivalent of alums are hard to make because the trivalent ion will often form a complex with fluoride in preference to the beryllium fluoride. However the violet coloured acid and rubidium chrome alum exist at chilly temperatures for a few hours.[28]

Tutton's salts (also called schoenites) containing magnesium with fluoroberyllate are difficult to produce, as the solutions tend to precipitate insoluble MgF2.

nameformulamolecular weightCAScrystal formdensitymelting pointsolubility g/100ml
potassium lithium tetrafluoroberyllateKLiBeF4131.05P63, a = 8.781 Å, b = 5.070 Å c = 8.566 Å[29]
rubidium lithium tetrafluoroberyllateRbLiBeF4177.41P6322, a = 8.980 Å, b = 5.185 Å c = 8.751 Å
caesium lithium tetrafluoroberyllateCsLiBeF4224.852P21/n, a = 9.328 Å b = 5.356 Å, c = 8.736 Å, γ = 89.82°
acid chromium fluoroberyllate tetracosihydrateH2Cr2(BeF4)4·24H2O878.40
ammonium chromium fluoroberyllate tetracosihydrate(NH4)2Cr2(BeF4)4·24H2O912.46
rubidium chromium fluoroberyllate tetracosihydrateRb2Cr2(BeF4)4·24H2O1047.32
manganese ammonium fluoroberyllate hydrate(NH4)2Mn(BeF4)2·6H2O369.1181.758
Rb2Fe(BeF4)2·6H2O[30] 504.884
ferrous ammonium fluoroberyllate hydrate(NH4)2Fe(BeF4)2·6H2O370.025
nickel potassium fluoroberyllate hydrateK2Ni(BeF4)2·6H2O414.913
nickel rubidium fluoroberyllate hydrateRb2Ni(BeF4)2·6H2O507.732
Cs2Ni(BeF4)2·6H2O602.608
nickel ammonium fluoroberyllate hydrate(NH4)2Ni(BeF4)2·6H2O372.874P21/a, a = 9.201 Å, b = 12.482 Å, c = 6.142 Å, β = 106.57 Å, V = 676.0 Å3 Z = 2[31] 1.843[32]
cobalt potassium fluoroberyllate hydrateK2Co(BeF4)2·6H2O415.233
cobalt rubidium fluoroberyllate hydrateRb2Co(BeF4)2·6H2O507.972
cobalt ammonium fluoroberyllate hydrate(NH4)2Co(BeF4)2·6H2O372.8741.821
copper rubidium fluoroberyllate hydrateRb2Cu(BeF4)2·6H2O512.585
copper ammonium fluoroberyllate hydrate(NH4)2Cu(BeF4)2·6H2O377.7261.858
zinc rubidium fluoroberyllate hydrateRb2Zn(BeF4)2·6H2O514.42
zinc ammonium fluoroberyllate hydrate(NH4)2Zn(BeF4)2·6H2O379.561.859
cadmium rubidium fluoroberyllate hydrateRb2Cd(BeF4)2·6H2O561.45
cadmium ammonium fluoroberyllate hydrate(NH4)2Cd(BeF4)2·6H2O426.591

Alums

Tetrafluoroberyllate salts equivalent to alums also exist with formula MABF4·12H2O, where M is univalent, and A trivalent. These are not common as fluoride often form insoluble products with the trivalent ions. Methods to produce these include evaporating mixed fluoride solutions under reduced pressure at 0 °C, or dissolving beryllium and other metal hydroxides in hydrofluoric acid at room temperature, cooled, and them mixing with cold ethyl alcohol, causing cooling and crystallisation. The unit cell dimensions are slightly smaller (by 0.03–0.05 Å) than the corresponding sulfate alums.

nameformulamolecular weightCAScrystal formdensitymelting pointsolubility g/100ml
ammonium aluminium tetrafluoroberyllate alumNH4AlBeF4·12H2O
potassium aluminium tetrafluoroberyllate alumKAlBeF4·12H2O
potassium chromium tetrafluoroberyllate alumKCrBeF4·12H2O[33]
ammonium chromium tetrafluoroberyllate alumNH4CrBeF4·12H2Ocubic a = 12.218 Å, Z = 4
rubidium chromium tetrafluoroberyllate alumRbCrBeF4·12H2O12.214 Å
caesium chromium tetrafluoroberyllate alumCsCrBeF4·12H2O12.323 Å
thallium chromium tetrafluoroberyllate alumTlCrBeF4·12H2O12.195 Å
rubidium iron tetrafluoroberyllate alumRbFeBeF4·12H2O
caesium iron tetrafluoroberyllate alumCsFeBeF4·12H2O
monomethyl chromium tetrafluoroberyllate alumCH3NH3CrBeF4·12H2O12.496 Å[34]
guanidium chromium tetrafluoroberyllate alumC(NH2)3CrBeF4·12H2O12.538 Åon heating forms a rhombohedral hexahydrate stable from 30 °C to 90 °C

References

  1. Book: Lunardi. Joel. Dupuis. Alain. Garin. Jerome. Issartel. Jean-Paul. Laurent. Michel. Peinnequin. Andre. Vignais. Pierre. Fluoroaluminum and Fluoroberyllium Complexes as Probes of the Catalytic Sites of Mitochondrial F1-ATPases. Adenine Nucleotides in Cellular Energy Transfer and Signal Transduction. 1992. UNESCO. 59–69. 9783034873154.
  2. Rây. Nirmalendu Nath. 1931. Fluoberyllate und ihre Analogie mit Sulfaten. I. Zeitschrift für anorganische und allgemeine Chemie. 201. 1. 289–300. 0863-1786. 10.1002/zaac.19312010126.
  3. Douglas. Thomas B.. William H. Payne . May 20, 1969. Measured Solid Enthalpy and Derived Thermodynamic Properties of and Liquid Lithium Tetrafluoroberyllate, Li2BeF4 from 273 to 900 K. Journal of Research of the National Bureau of Standards Section A. Institute for Basic Standards, National Bureau of Standards. Washington, D.C.. 73A. 5.
  4. Perfect. F. H.. 1952. Further Observations on the Similarities of Fluoberyllate and Sulphate Ions. Proceedings of the Pennsylvania Academy of Science. 26 . 54–65. 44109476.
  5. Furuhashi. Koushi. Junko Habasaki . Isao Okada . 1986. A molecular dynamics study of the structures and dynamic properties of molten NaBeF3and Na2BeF4. Molecular Physics. 59. 6. 1329–1344. 0026-8976. 10.1080/00268978600102761. 1986MolPh..59.1329F.
  6. Book: Perry, Dale L.. Handbook of Inorganic Compounds, Second Edition. 13 July 2013. 2011-05-19. Taylor & Francis. 9781439814611. 394.
  7. Web site: AtomWork Materials Database. Villars. P.. Nationional Institute of Materials Science. 17 July 2013.
  8. Book: Simons, J.H.. Fluorine Chemistry. 13 July 2013. 1954-01-01. Elsevier. 9780323145435. 5.
  9. Andreev. A. A.. A. N. D’yachenko, R. I. Kraidenko. 2011. Fluorination of beryllium concentrates with ammonium fluorides. Russian Journal of Applied Chemistry. 81. 2. 178–182. 1070-4272. 10.1134/S1070427208020043. 95507342.
  10. Dyachenko . A.N. . Kraydenko . R.I. . Petlin . I.V. . Malyutin . L.N. . The Research of (NH4)2BeF4 Solution Purification Effectiveness . Procedia Engineering . 2016 . 152 . 51–58 . 10.1016/j.proeng.2016.07.624. free .
  11. Rây. Nirmalendu Nath. 1932. Fluoberyllate und ihre Analogie mit den Sulfaten. II. Fluoberyllate einiger zweiwertiger Metalle. Zeitschrift für anorganische und allgemeine Chemie. 205. 3. 257–267. 0863-1786. 10.1002/zaac.19322050307. German.
  12. Sastri. Malladi Narasimha. Radiochemical measurements on neutron sources. 1958. Durham University. 18–20.
  13. Book: Kaduk . J. A. . Gilmore . C. J. . Kaduk . J. A. . Schenk . H. . International Tables for Crystallography Volume H Powder diffraction . 2019 . 496–508 . https://onlinelibrary.wiley.com/iucr/itc/Ha/ch4o9v0001/sec4o9o4/ . Section 4.9.4. Chemical reasonableness.
  14. Ghazaryan. V.V.. Fleck. M.. Petrosyan. A.M.. New chemical analogs of triglycine sulfate. Journal of Crystal Growth. September 2014. 401. 857–862. 10.1016/j.jcrysgro.2013.11.054. 2014JCrGr.401..857G.
  15. Ghosh. Amiya Kanti. 1959. Fluoberyllates of Organic Bases. I. Zeitschrift für anorganische und allgemeine Chemie. 300. 1–2. 98–101. 0044-2313. 10.1002/zaac.19593000110.
  16. Kanti Ghosh. Amiya. Nirmalendu Nath Ráy . 1959. Fluoberyllates and their Analogy with Sulphates. XII. Complex Compounds of Zinc and Cadmium Fluoberyllate with Organic Bases. Zeitschrift für anorganische und allgemeine Chemie. 300. 1–2. 109–112. 0044-2313. 10.1002/zaac.19593000112.
  17. Gerrard . Lee A. . Weller . Mark T. . Propane-1,2-diammonium tetrafluoroberyllate . Acta Crystallographica Section C . 30 September 2002 . 58 . 10 . m504–m505 . 10.1107/S0108270102015718. 12359927 . 2002AcCrC..58M.504G .
  18. Rây. Nirmalendunath. 1939. Fluoberyllate und ihre Analogie mit Sulfaten. VI. Die Fluoberyllate von Metallamminkomplexen. Zeitschrift für anorganische und allgemeine Chemie. 241. 2–3. 165–171. 0863-1786. 10.1002/zaac.19392410203.
  19. Holm. J. L.. K. Lønvik . 1982. Studies of the polymorphic transformations of dicalcium silicate (Ca2SiO4) and sodium tetrafluoroberyllate (Na2BeF4) by Thermosonimetry and differential scanning calorimetry. Journal of Thermal Analysis. 25. 1. 109–115. 0368-4466. 10.1007/BF01913059. 101885107.
  20. Book: Emeléus. Harry Julius. Sharpe. A. G.. ADVANCES IN INORGANIC CHEMISTRY AND RADIOCHEMISTRY. 13 July 2013. 1972-12-06. Academic Press. 9780080578637. 271–275.
  21. Book: Simons, J.H.. Fluorine Chemistry. 13 July 2013. 1964-01-01. Elsevier. 9780323147248. 20–22.
  22. Book: Karas, George V.. New Developments in Crystal Growth Research. 14 July 2013. 2005. Nova Publishers. 9781594545399. 24–26.
  23. Web site: Extraction ofBeryllium-10 from Soil by Fusion. Stone. John. May 2004. 14 July 2013.
  24. da Silva. Iván. Cristina . González Silgo . Javier . González Platas . Juan . Rodríguez Carvajal . María Luisa . Martínez Sarrión . Lourdes . Mestres . 2005. Powder neutron diffraction of Tl2BeF4 at six temperatures from room temperature to 1.5 K. Acta Crystallographica Section C. 61. 12. i113–i116. 0108-2701. 10.1107/S010827010503249X. 16330826. 2005AcCrC..61I.113D .
  25. Book: Walsh, Kenneth A.. Beryllium Chemistry and Processing. 14 July 2013. 2009-01-01. ASM International. 9780871707215. 100.
  26. Zarembovskaya. T. A.. V. M. Varikash . P. A. Pupkevich . 1972. Thermal expansion of triglycine fluoroberyllate crystals near the ferroelectric transition point. Soviet Physics Journal. 15. 6. 920–922. 0038-5697. 10.1007/BF00912245. 1972SvPhJ..15..920Z. 120913512.
  27. Wieder. H.H.. C.R. Parkerson . 1966. Some ferroelectric and dielectric properties of triglycine fluoberyllate. Journal of Physics and Chemistry of Solids. 27. 2. 247–252. 0022-3697. 10.1016/0022-3697(66)90029-1. 1966JPCS...27..247W.
  28. Ghosh. Amiya Kanti. 1959. Complex Chromic Fluoberyllates. I. Zeitschrift für anorganische und allgemeine Chemie. 300. 1–2. 102–108. 0044-2313. 10.1002/zaac.19593000111.
  29. Hahn. Th.. G. Lohre . S. J. Chung . 1969. A new tetrahedral framework structure in sulfates and fluoberyllates. Die Naturwissenschaften. 56. 9. 459. 0028-1042. 10.1007/bf00601063. 1969NW.....56Q.459H. 1161273.
  30. Rây. Nirmalendunath. 1936. Fluoberyllate und ihre Analogie mit Sulfaten. IV. Doppelsalze mit Rubidium- und Cäsiumfluoberyllaten. Zeitschrift für anorganische und allgemeine Chemie. 227. 1. 32–36. 0863-1786. 10.1002/zaac.19362270105. German.
  31. Montgomery. H.. Diammonium nickel bis(tetrafluoroberyllate)hexahydrate. Acta Crystallographica Section B. 15 September 1980. 36. 9. 2121–2123. 10.1107/S0567740880008060. 1980AcCrB..36.2121M .
  32. Nath Rây. Nirmalendu. 1932. Fluoberyllate und ihre Analogie mit Sulfaten. III. Doppelsalze der Fluoberyllate. Zeitschrift für anorganische und allgemeine Chemie. 206. 2. 209–216. 0863-1786. 10.1002/zaac.19322060209. German.
  33. Lari-Lavassani . Abbasse . Avinens . Christian . Cot . Louis . Préparation et étude radiocristallographique des aluns fluorobéryllates de chrome . Comptes rendus hebdomadaires des séances de l'Académie des sciences . 19 May 1969 . C268 . 1782–1784 . Preparation and X-ray crystallographic study of crome fluoroberyllate alums . Paris . fr.
  34. Lari-Lavassani . Abbasse . Avinens . Christian . Cot . Louis . Sur l'existence et la cristallographie de quelques nouveaux fluorobéryllates doubles de chrome [CH<sub>3</sub>NH<sub>3</sub>]Cr(BeF4)2·12H2O, [C(NH2)<sub>3</sub>]Cr(BeF4)2·12H2O et [C(NH<sub>2</sub>)<sub>3</sub>]Cr(BeF4)2·6H2O ]. Comptes rendus hebdomadaires des séances de l'Académie des sciences . 15 June 1970 . C270 . 1973–1975 . On the existence and crystallography of several new double chrome fluoroberyllates [CH<sub>3</sub>NH<sub>3</sub>]Cr(BeF4)2·12H2O, [C(NH2)<sub>3</sub>]Cr(BeF4)2·12H2O and [C(NH<sub>2</sub>)<sub>3</sub>]Cr(BeF4)2·6H2O . Paris . fr.