Tensor product explained

In mathematics, the tensor product

VW

of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map

V x WVW

that maps a pair

(v,w),v\inV,w\inW

to an element of

VW

denoted .

An element of the form

vw

is called the tensor product of and . An element of

VW

is a tensor, and the tensor product of two vectors is sometimes called an elementary tensor or a decomposable tensor. The elementary tensors span

VW

in the sense that every element of

VW

is a sum of elementary tensors. If bases are given for and, a basis of

VW

is formed by all tensor products of a basis element of and a basis element of .

The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from

V x W

into another vector space factors uniquely through a linear map

VW\toZ

(see Universal property).

Tensor products are used in many application areas, including physics and engineering. For example, in general relativity, the gravitational field is described through the metric tensor, which is a tensor field with one tensor at each point of the space-time manifold, and each belonging to the tensor product of the cotangent space at the point with itself.

Definitions and constructions

The tensor product of two vector spaces is a vector space that is defined up to an isomorphism. There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.

The tensor product can also be defined through a universal property; see, below. As for every universal property, all objects that satisfy the property are isomorphic through a unique isomorphism that is compatible with the universal property. When this definition is used, the other definitions may be viewed as constructions of objects satisfying the universal property and as proofs that there are objects satisfying the universal property, that is that tensor products exist.

From bases

BV

and .

The tensor product

VW

of and is a vector space that has as a basis the set of all

vw

with

v\inBV

and . This definition can be formalized in the following way (this formalization is rarely used in practice, as the preceding informal definition is generally sufficient):

VW

is the set of the functions from the Cartesian product

BV x BW

to that have a finite number of nonzero values. The pointwise operations make

VW

a vector space. The function that maps

(v,w)

to and the other elements of

BV x BW

to is denoted .

The set

\{vw\midv\inBV,w\inBW\}

is then straightforwardly a basis of, which is called the tensor product of the bases

BV

and .

We can equivalently define

VW

to be the set of bilinear forms on

V x W

that are nonzero at only a finite number of elements of . To see this, given

(x,y)\inV x W

and a bilinear form, we can decompose

x

and

y

in the bases

BV

and

BW

as:x=\sum_ x_v\, v \quad \text\quad y=\sum_ y_w\, w, where only a finite number of

xv

's and

yw

's are nonzero, and find by the bilinearity of

B

that:B(x, y) =\sum_\sum_ x_v y_w\, B(v, w)

Hence, we see that the value of

B

for any

(x,y)\inV x W

is uniquely and totally determined by the values that it takes on . This lets us extend the maps

vw

defined on

BV x BW

as before into bilinear maps

vw:V x W\toF

, by letting:(v \otimes w)(x, y) : =\sum_\sum_ x_ y_\, (v \otimes w)(v', w') = x_v \, y_w .

Then we can express any bilinear form

B

as a (potentially infinite) formal linear combination of the

vw

maps according to:B = \sum_\sum_ B(v, w)(v \otimes w)making these maps similar to a Schauder basis for the vector space

Hom(V,W;F)

of all bilinear forms on . To instead have it be a proper Hamel basis, it only remains to add the requirement that

B

is nonzero at an only a finite number of elements of, and consider the subspace of such maps instead.

In either construction, the tensor product of two vectors is defined from their decomposition on the bases. More precisely, taking the basis decompositions of

x\inV

and

y\inW

as before:\beginx\otimes y&=\biggl(\sum_ x_v\, v\biggr) \otimes \biggl(\sum_ y_w\, w\biggr)\\[5mu]&=\sum_\sum_ x_v y_w\, v\otimes w.\end

This definition is quite clearly derived from the coefficients of

B(v,w)

in the expansion by bilinearity of

B(x,y)

using the bases

BV

and, as done above. It is then straightforward to verify that with this definition, the map

{}:(x,y)\mapstoxy

is a bilinear map from

V x W

to

VW

satisfying the universal property that any construction of the tensor product satisfies (see below).

If arranged into a rectangular array, the coordinate vector of

xy

is the outer product of the coordinate vectors of

x

and . Therefore, the tensor product is a generalization of the outer product, that is, an abstraction of it beyond coordinate vectors.

A limitation of this definition of the tensor product is that, if one changes bases, a different tensor product is defined. However, the decomposition on one basis of the elements of the other basis defines a canonical isomorphism between the two tensor products of vector spaces, which allows identifying them. Also, contrarily to the two following alternative definitions, this definition cannot be extended into a definition of the tensor product of modules over a ring.

As a quotient space

A construction of the tensor product that is basis independent can be obtained in the following way.

Let and be two vector spaces over a field .

V x W

as a basis. That is, the basis elements of are the pairs

(v,w)

with

v\inV

and . To get such a vector space, one can define it as the vector space of the functions

V x W\toF

that have a finite number of nonzero values and identifying

(v,w)

with the function that takes the value on

(v,w)

and otherwise.

Let be the linear subspace of that is spanned by the relations that the tensor product must satisfy. More precisely, is spanned by the elements of one of the forms:

\begin{align} (v1+v2,w)&-(v1,w)-(v2,w),\\ (v,w1+w2)&-(v,w1)-(v,w2),\\ (sv,w)&-s(v,w),\\ (v,sw)&-s(v,w), \end{align}

where,

w,w1,w2\inW

and .

Then, the tensor product is defined as the quotient space:

VW=L/R,

and the image of

(v,w)

in this quotient is denoted .

It is straightforward to prove that the result of this construction satisfies the universal property considered below. (A very similar construction can be used to define the tensor product of modules.)

Universal property

In this section, the universal property satisfied by the tensor product is described. As for every universal property, two objects that satisfy the property are related by a unique isomorphism. It follows that this is a (non-constructive) way to define the tensor product of two vector spaces. In this context, the preceding constructions of tensor products may be viewed as proofs of existence of the tensor product so defined.

A consequence of this approach is that every property of the tensor product can be deduced from the universal property, and that, in practice, one may forget the method that has been used to prove its existence.

The "universal-property definition" of the tensor product of two vector spaces is the following (recall that a bilinear map is a function that is separately linear in each of its arguments):

The tensor product of two vector spaces and is a vector space denoted as, together with a bilinear map

{}:(v,w)\mapstovw

from

V x W

to, such that, for every bilinear map, there is a unique linear map, such that

h=\tildeh\circ{}

(that is,

h(v,w)=\tildeh(vw)

for every

v\inV

and).

Linearly disjoint

Like the universal property above, the following characterization may also be used to determine whether or not a given vector space and given bilinear map form a tensor product.

For example, it follows immediately that if

m

and

n

are positive integers then

Z:=\Complexmn

and the bilinear map

T:\Complexm x \Complexn\to\Complexmn

defined by sending

(x,y)=\left(\left(x1,\ldots,xm\right),\left(y1,\ldots,yn\right)\right)

to

\left(xiyj\right)\stackrel{i=1,\ldots,m{j=1,\ldots,n}}

form a tensor product of

X:=\Complexm

and . Often, this map

T

will be denoted by

so that

xy:= T(x,y)

denotes this bilinear map's value at .

As another example, suppose that

\ComplexS

is the vector space of all complex-valued functions on a set

S

with addition and scalar multiplication defined pointwise (meaning that

f+g

is the map

s\mapstof(s)+g(s)

and

cf

is the map). Let

S

and

T

be any sets and for any

f\in\ComplexS

and, let

fg\in\ComplexS

denote the function defined by . If

X\subseteq\ComplexS

and

Y\subseteq\ComplexT

are vector subspaces then the vector subspace

Z:=\operatorname{span}\left\{fg:f\inX,g\inY\right\}

of

\ComplexS

together with the bilinear map: \begin \;&& X \times Y &&\;\to \;& Z \\[0.3ex] && (f, g) &&\;\mapsto\;& f \otimes g \\\endform a tensor product of

X

and .

Properties

Dimension

If and are vectors spaces of finite dimension, then

VW

is finite-dimensional, and its dimension is the product of the dimensions of and .

This results from the fact that a basis of

VW

is formed by taking all tensor products of a basis element of and a basis element of .

Associativity

The tensor product is associative in the sense that, given three vector spaces, there is a canonical isomorphism:

(UV)W\congU(VW),

that maps

(uv)w

to .

This allows omitting parentheses in the tensor product of more than two vector spaces or vectors.

Commutativity as vector space operation

The tensor product of two vector spaces

V

and

W

is commutative in the sense that there is a canonical isomorphism:

VW\congWV,

that maps

vw

to .

On the other hand, even when, the tensor product of vectors is not commutative; that is, in general.

The map

xy\mapstoyx

from

VV

to itself induces a linear automorphism that is called a . More generally and as usual (see tensor algebra), let

V

denote the tensor product of copies of the vector space . For every permutation of the first positive integers, the map:

x1 ⊗ xn\mapstoxs(1)xs(n)

induces a linear automorphism of, which is called a braiding map.

Tensor product of linear maps

Given a linear map, and a vector space, the tensor product:

fW:UW\toVW

is the unique linear map such that:

(fW)(uw)=f(u)w.

The tensor product

Wf

is defined similarly.

Given two linear maps

f:U\toV

and, their tensor product:

fg:UW\toVZ

is the unique linear map that satisfies:

(fg)(uw)=f(u)g(w).

One has:

fg=(fZ)\circ(Ug)=(Vg)\circ(fW).

In terms of category theory, this means that the tensor product is a bifunctor from the category of vector spaces to itself.[1]

If and are both injective or surjective, then the same is true for all above defined linear maps. In particular, the tensor product with a vector space is an exact functor; this means that every exact sequence is mapped to an exact sequence (tensor products of modules do not transform injections into injections, but they are right exact functors).

By choosing bases of all vector spaces involved, the linear maps and can be represented by matrices. Then, depending on how the tensor

vw

is vectorized, the matrix describing the tensor product

fg

is the Kronecker product of the two matrices. For example, if, and above are all two-dimensional and bases have been fixed for all of them, and and are given by the matrices:A=\begin a_ & a_ \\ a_ & a_ \\ \end, \qquad B=\begin b_ & b_ \\ b_ & b_ \\ \end,respectively, then the tensor product of these two matrices is: \begin a_ & a_ \\ a_ & a_ \\ \end \otimes \begin b_ & b_ \\ b_ & b_ \\ \end = \begin a_ \begin b_ & b_ \\ b_ & b_ \\ \end & a_ \begin b_ & b_ \\ b_ & b_ \\ \end \\[3pt] a_ \begin b_ & b_ \\ b_ & b_ \\ \end & a_ \begin b_ & b_ \\ b_ & b_ \\ \end \\ \end = \begin a_ b_ & a_ b_ & a_ b_ & a_ b_ \\ a_ b_ & a_ b_ & a_ b_ & a_ b_ \\ a_ b_ & a_ b_ & a_ b_ & a_ b_ \\ a_ b_ & a_ b_ & a_ b_ & a_ b_ \\ \end.

The resultant rank is at most 4, and thus the resultant dimension is 4. here denotes the tensor rank i.e. the number of requisite indices (while the matrix rank counts the number of degrees of freedom in the resulting array). .

A dyadic product is the special case of the tensor product between two vectors of the same dimension.

General tensors

See also: Tensor. For non-negative integers and a type

(r,s)

tensor on a vector space is an element of:T^r_s(V) = \underbrace_r \otimes \underbrace_s = V^ \otimes \left(V^*\right)^.Here

V*

is the dual vector space (which consists of all linear maps from to the ground field).

There is a product map, called the :T^r_s (V) \otimes_K T^_ (V) \to T^_(V).

It is defined by grouping all occurring "factors" together: writing

vi

for an element of and

fi

for an element of the dual space:(v_1 \otimes f_1) \otimes (v'_1) = v_1 \otimes v'_1 \otimes f_1.

If is finite dimensional, then picking a basis of and the corresponding dual basis of

V*

naturally induces a basis of
r(V)
T
s
(this basis is described in the article on Kronecker products). In terms of these bases, the components of a (tensor) product of two (or more) tensors can be computed. For example, if and are two covariant tensors of orders and respectively (i.e.

F\in

0
T
m
and), then the components of their tensor product are given by:[2] (F \otimes G)_ = F_ G_.

Thus, the components of the tensor product of two tensors are the ordinary product of the components of each tensor. Another example: let be a tensor of type with components, and let be a tensor of type

(1,0)

with components . Then:\left(U \otimes V\right)^\alpha _\beta ^\gamma = U^\alpha _\beta V^\gammaand:(V \otimes U)^ _\sigma = V^\mu U^\nu _\sigma.

Tensors equipped with their product operation form an algebra, called the tensor algebra.

Evaluation map and tensor contraction

For tensors of type there is a canonical evaluation map:V \otimes V^* \to Kdefined by its action on pure tensors:v \otimes f \mapsto f(v).

More generally, for tensors of type, with, there is a map, called tensor contraction:T^r_s (V) \to T^_(V).(The copies of

V

and

V*

on which this map is to be applied must be specified.)

On the other hand, if

V

is, there is a canonical map in the other direction (called the coevaluation map):\begin K \to V \otimes V^* \\ \lambda \mapsto \sum_i \lambda v_i \otimes v^*_i \endwhere

v1,\ldots,vn

is any basis of, and
*
v
i
is its dual basis. This map does not depend on the choice of basis.[3]

The interplay of evaluation and coevaluation can be used to characterize finite-dimensional vector spaces without referring to bases.[4]

Adjoint representation

The tensor product

r
T
s(V)
may be naturally viewed as a module for the Lie algebra

End(V)

by means of the diagonal action: for simplicity let us assume, then, for each,u(a \otimes b) = u(a) \otimes b - a \otimes u^*(b),where

u*\inEnd\left(V*\right)

is the transpose of, that is, in terms of the obvious pairing on,\langle u(a), b \rangle = \langle a, u^*(b) \rangle.

There is a canonical isomorphism

1
T
1(V)

\toEnd(V)

given by:(a \otimes b)(x) = \langle x, b \rangle a.

Under this isomorphism, every in

End(V)

may be first viewed as an endomorphism of
1
T
1(V)
and then viewed as an endomorphism of . In fact it is the adjoint representation of .

Linear maps as tensors

Given two finite dimensional vector spaces, over the same field, denote the dual space of as, and the -vector space of all linear maps from to as . There is an isomorphism:U^* \otimes V \cong \mathrm(U, V),defined by an action of the pure tensor

fv\inU*V

on an element of,(f \otimes v)(u) = f(u) v.

Its "inverse" can be defined using a basis

\{ui\}

and its dual basis
*
\{u
i\}
as in the section "Evaluation map and tensor contraction" above:\begin \mathrm (U,V) \to U^* \otimes V \\ F \mapsto \sum_i u^*_i \otimes F(u_i). \end

This result implies:\dim(U \otimes V) = \dim(U)\dim(V),which automatically gives the important fact that

\{uivj\}

forms a basis of

UV

where

\{ui\},\{vj\}

are bases of and .

Furthermore, given three vector spaces,, the tensor product is linked to the vector space of all linear maps, as follows:\mathrm (U \otimes V, W) \cong \mathrm (U, \mathrm(V, W)).This is an example of adjoint functors: the tensor product is "left adjoint" to Hom.

Tensor products of modules over a ring

See main article: Tensor product of modules. The tensor product of two modules and over a commutative ring is defined in exactly the same way as the tensor product of vector spaces over a field:A \otimes_R B := F (A \times B) / G,where now

F(A x B)

is the free -module generated by the cartesian product and is the -module generated by these relations.

More generally, the tensor product can be defined even if the ring is non-commutative. In this case has to be a right--module and is a left--module, and instead of the last two relations above, the relation:(ar,b)\sim (a,rb)is imposed. If is non-commutative, this is no longer an -module, but just an abelian group.

The universal property also carries over, slightly modified: the map

\varphi:A x B\toARB

defined by

(a,b)\mapstoab

is a middle linear map (referred to as "the canonical middle linear map"[5]); that is, it satisfies:\begin \varphi(a + a', b) &= \varphi(a, b) + \varphi(a', b) \\ \varphi(a, b + b') &= \varphi(a, b) + \varphi(a, b') \\ \varphi(ar, b) &= \varphi(a, rb)\end

The first two properties make a bilinear map of the abelian group . For any middle linear map

\psi

of, a unique group homomorphism of

ARB

satisfies, and this property determines

\varphi

within group isomorphism. See the main article for details.

Tensor product of modules over a non-commutative ring

Let A be a right R-module and B be a left R-module. Then the tensor product of A and B is an abelian group defined by:A \otimes_R B := F (A \times B) / Gwhere

F(A x B)

is a free abelian group over

A x B

and G is the subgroup of

F(A x B)

generated by relations:\begin &\forall a, a_1, a_2 \in A, \forall b, b_1, b_2 \in B, \text r \in R:\\ &(a_1,b) + (a_2,b) - (a_1 + a_2,b),\\ &(a,b_1) + (a,b_2) - (a,b_1+b_2),\\ &(ar,b) - (a,rb).\\\end

The universal property can be stated as follows. Let G be an abelian group with a map

q:A x B\toG

that is bilinear, in the sense that:\begin q(a_1 + a_2, b) &= q(a_1, b) + q(a_2, b),\\ q(a, b_1 + b_2) &= q(a, b_1) + q(a, b_2),\\ q(ar, b) &= q(a, rb).\end

Then there is a unique map

\overline{q}:AB\toG

such that

\overline{q}(ab)=q(a,b)

for all

a\inA

and .

Furthermore, we can give

ARB

a module structure under some extra conditions:
  1. If A is a (S,R)-bimodule, then

ARB

is a left S-module, where .
  1. If B is a (R,S)-bimodule, then

ARB

is a right S-module, where .
  1. If A is a (S,R)-bimodule and B is a (R,T)-bimodule, then

ARB

is a (S,T)-bimodule, where the left and right actions are defined in the same way as the previous two examples.
  1. If R is a commutative ring, then A and B are (R,R)-bimodules where

ra:=ar

and . By 3), we can conclude

ARB

is a (R,R)-bimodule.

Computing the tensor product

For vector spaces, the tensor product

VW

is quickly computed since bases of of immediately determine a basis of, as was mentioned above. For modules over a general (commutative) ring, not every module is free. For example, is not a free abelian group (-module). The tensor product with is given by:M \otimes_\mathbf \mathbf/n\mathbf = M/nM.

More generally, given a presentation of some -module, that is, a number of generators

mi\inM,i\inI

together with relations:\sum_ a_ m_i = 0,\qquad a_ \in R,the tensor product can be computed as the following cokernel:M \otimes_R N = \operatorname \left(N^J \to N^I\right)

Here, and the map

NJ\toNI

is determined by sending some

n\inN

in the th copy of

NJ

to

aijn

(in). Colloquially, this may be rephrased by saying that a presentation of gives rise to a presentation of . This is referred to by saying that the tensor product is a right exact functor. It is not in general left exact, that is, given an injective map of -modules, the tensor product:M_1 \otimes_R N \to M_2 \otimes_R Nis not usually injective. For example, tensoring the (injective) map given by multiplication with, with yields the zero map, which is not injective. Higher Tor functors measure the defect of the tensor product being not left exact. All higher Tor functors are assembled in the derived tensor product.

Tensor product of algebras

See main article: Tensor product of algebras. Let be a commutative ring. The tensor product of -modules applies, in particular, if and are -algebras. In this case, the tensor product

ARB

is an -algebra itself by putting:(a_1 \otimes b_1) \cdot (a_2 \otimes b_2) = (a_1 \cdot a_2) \otimes (b_1 \cdot b_2).For example:R[x] \otimes_R R[y] \cong R[x, y].

A particular example is when and are fields containing a common subfield . The tensor product of fields is closely related to Galois theory: if, say,, where is some irreducible polynomial with coefficients in, the tensor product can be calculated as:A \otimes_R B \cong B[x] / f(x)where now is interpreted as the same polynomial, but with its coefficients regarded as elements of . In the larger field, the polynomial may become reducible, which brings in Galois theory. For example, if is a Galois extension of, then:A \otimes_R A \cong A[x] / f(x)is isomorphic (as an -algebra) to the .

Eigenconfigurations of tensors

A

with entries in a field

K

represent linear maps of vector spaces, say, and thus linear maps

\psi:Pn-1\toPn-1

of projective spaces over . If

A

is nonsingular then

\psi

is well-defined everywhere, and the eigenvectors of

A

correspond to the fixed points of . The eigenconfiguration of

A

consists of

n

points in, provided

A

is generic and

K

is algebraically closed. The fixed points of nonlinear maps are the eigenvectors of tensors. Let

A=

(a
i1i2id

)

be a

d

-dimensional tensor of format

n x n x x n

with entries
(a
i1i2id

)

lying in an algebraically closed field

K

of characteristic zero. Such a tensor

A\in(Kn)

defines polynomial maps

Kn\toKn

and

Pn-1\toPn-1

with coordinates:\psi_i(x_1, \ldots, x_n) = \sum_^n \sum_^n \cdots \sum_^n a_ x_ x_\cdots x_ \;\; \mbox i = 1, \ldots, n

Thus each of the

n

coordinates of

\psi

is a homogeneous polynomial

\psii

of degree

d-1

in . The eigenvectors of

A

are the solutions of the constraint:\mbox \begin x_1 & x_2 & \cdots & x_n \\ \psi_1(\mathbf) & \psi_2(\mathbf) & \cdots & \psi_n(\mathbf) \end \leq 1and the eigenconfiguration is given by the variety of the

2 x 2

minors of this matrix.[6]

Other examples of tensor products

Topological tensor products

See main article: Topological tensor product and Tensor product of Hilbert spaces.

Hilbert spaces generalize finite-dimensional vector spaces to arbitrary dimensions. There is an analogous operation, also called the "tensor product," that makes Hilbert spaces a symmetric monoidal category. It is essentially constructed as the metric space completion of the algebraic tensor product discussed above. However, it does not satisfy the obvious analogue of the universal property defining tensor products;[7] the morphisms for that property must be restricted to Hilbert–Schmidt operators.[8]

In situations where the imposition of an inner product is inappropriate, one can still attempt to complete the algebraic tensor product, as a topological tensor product. However, such a construction is no longer uniquely specified: in many cases, there are multiple natural topologies on the algebraic tensor product.

Tensor product of graded vector spaces

Some vector spaces can be decomposed into direct sums of subspaces. In such cases, the tensor product of two spaces can be decomposed into sums of products of the subspaces (in analogy to the way that multiplication distributes over addition).

Tensor product of representations

See main article: Tensor product of representations.

Vector spaces endowed with an additional multiplicative structure are called algebras. The tensor product of such algebras is described by the Littlewood–Richardson rule.

Tensor product of quadratic forms

See main article: Tensor product of quadratic forms.

Tensor product of multilinear forms

Given two multilinear forms

f(x1,...,xk)

and

g(x1,...,xm)

on a vector space

V

over the field

K

their tensor product is the multilinear form:(f \otimes g) (x_1,\dots,x_) = f(x_1,\dots,x_k) g(x_,\dots,x_).[9]

This is a special case of the product of tensors if they are seen as multilinear maps (see also tensors as multilinear maps). Thus the components of the tensor product of multilinear forms can be computed by the Kronecker product.

Tensor product of sheaves of modules

See main article: Sheaf of modules.

Tensor product of line bundles

See also: Tensor product bundle.

Tensor product of fields

See main article: Tensor product of fields.

Tensor product of graphs

See main article: Tensor product of graphs. It should be mentioned that, though called "tensor product", this is not a tensor product of graphs in the above sense; actually it is the category-theoretic product in the category of graphs and graph homomorphisms. However it is actually the Kronecker tensor product of the adjacency matrices of the graphs. Compare also the section Tensor product of linear maps above.

Monoidal categories

The most general setting for the tensor product is the monoidal category. It captures the algebraic essence of tensoring, without making any specific reference to what is being tensored. Thus, all tensor products can be expressed as an application of the monoidal category to some particular setting, acting on some particular objects.

Quotient algebras

A number of important subspaces of the tensor algebra can be constructed as quotients: these include the exterior algebra, the symmetric algebra, the Clifford algebra, the Weyl algebra, and the universal enveloping algebra in general.

The exterior algebra is constructed from the exterior product. Given a vector space, the exterior product

V\wedgeV

is defined as:V \wedge V := V \otimes V \big/ \.

When the underlying field of does not have characteristic 2, then this definition is equivalent to:V \wedge V := V \otimes V \big/ \bigl\.

The image of

v1v2

in the exterior product is usually denoted

v1\wedgev2

and satisfies, by construction, . Similar constructions are possible for

V...V

(factors), giving rise to, the th exterior power of . The latter notion is the basis of differential -forms.

The symmetric algebra is constructed in a similar manner, from the symmetric product:V \odot V := V \otimes V \big/ \bigl\.

More generally:\operatorname^n V := \underbrace_n \big/ (\dots \otimes v_i \otimes v_ \otimes \dots - \dots \otimes v_ \otimes v_ \otimes \dots)

That is, in the symmetric algebra two adjacent vectors (and therefore all of them) can be interchanged. The resulting objects are called symmetric tensors.

Tensor product in programming

Array programming languages

Array programming languages may have this pattern built in. For example, in APL the tensor product is expressed as ○.× (for example A ○.× B or A ○.× B ○.× C). In J the tensor product is the dyadic form of */ (for example a */ b or a */ b */ c).

J's treatment also allows the representation of some tensor fields, as a and b may be functions instead of constants. This product of two functions is a derived function, and if a and b are differentiable, then a */ b is differentiable.

However, these kinds of notation are not universally present in array languages. Other array languages may require explicit treatment of indices (for example, MATLAB), and/or may not support higher-order functions such as the Jacobian derivative (for example, Fortran/APL).

References

Notes and References

  1. Book: Hazewinkel. Michiel. Gubareni. Nadezhda Mikhaĭlovna. Gubareni. Nadiya. Kirichenko. Vladimir V.. Algebras, rings and modules. 100. Springer. 2004. 978-1-4020-2690-4.
  2. Analogous formulas also hold for contravariant tensors, as well as tensors of mixed variance. Although in many cases such as when there is an inner product defined, the distinction is irrelevant.
  3. Web site: The Coevaluation on Vector Spaces. 2008-11-13. The Unapologetic Mathematician. 2017-01-26. live . https://web.archive.org/web/20170202080439/https://unapologetic.wordpress.com/2008/11/13/the-coevaluation-on-vector-spaces/. 2017-02-02.
  4. See Compact closed category.
  5. Book: Hungerford, Thomas W.. Algebra. Springer. 1974. 0-387-90518-9.
  6. Abo . H. . Seigal . A. . Sturmfels . B. . Eigenconfigurations of Tensors . 2015 . math.AG . 1505.05729 .
  7. Web site: Non-existence of tensor products of Hilbert spaces. July 22, 2010. Paul. Garrett.
  8. Book: Kadison . Richard V. . Ringrose . John R. . Fundamentals of the theory of operator algebras . I . . Providence, R.I. . . 978-0-8218-0819-1 . 1468229 . 1997 . Thm. 2.6.4..
  9. Book: Tu, L. W. . An Introduction to Manifolds . Universitext . Springer . 25 . 978-1-4419-7399-3 . 2010.