Anchorage (orthodontics) explained

Anchorage a medical term in orthodontics is defined as a way of resisting movement of a tooth or number of teeth by using different techniques. Anchorage is an important consideration in the field of orthodontics as this is a concept that is used frequently when correcting malocclusions. Unplanned or unwanted tooth movement can have dire consequences in a treatment plan, and therefore using anchorage stop a certain tooth movement becomes important.[1] Anchorage can be used from many different sources such as teeth, bone, implants or extra-orally.[2] [3]

Certain factors related to the anatomy of teeth can affect the anchorage that may be used. Multi-rooted, longer-rooted, triangular shaped root teeth usually provide more anchorage than the single-rooted, short-rooted and ovoid rooted teeth.

History

One of the earliest uses of anchorage came from Henry Albert Baker for his use of the intermaxillary anchorage or Baker's Anchorage. This type of anchorage involves using elastics from one jaw to the other, in the form of either Class 2 elastics (moving upper teeth back) where lower molar teeth serve as anchors, or Class 3 elastics (moving lower teeth back) where upper molars serve as anchors. Intramaxillary anchorage is also used in the form of E-chain, when elastics are used from the back molar teeth to the front teeth in the same jaw to move teeth back of the mouth.

Classification based on site

Orthodontic headgear will usually consist of three major components:

Classification based on number of teeth

Robert Moyers defined the classification of anchorage in the number of units.[4]

Classification based on space closure

Ravindra Nanda and Charles J. Burstone described three types of anchorages that are based on the need during a treatment where space closure is needed.[5] In some orthodontic cases, teeth have to be removed in order to either relieve dental crowding or reduce a large overjet or overbite. Therefore, the space created after removing teeth is usually closed during an orthodontic treatment. A space can be closed by either moving back teeth forward or front teeth backward.

Group A Anchorage

This type is considered critical anchorage, which involves 75% movement of anterior teeth and 25% posterior teeth into the space created by extraction. Thus the expectation in this type of anchorage is to bring front teeth back.

Group B Anchorage

This type of anchorage is considered moderate, which involves 50% movement of both anterior and posterior teeth into the extraction space. The expectation in this type of anchorage is to see posterior teeth moving forward equally as compared to anterior teeth moving backwards.

Group C Anchorage

This type of anchorage is considered non-critical, which involves posterior teeth moving forward 75% of the time and front teeth moving backwards 25% of the time into the extraction space. Greater movement of back teeth is seen in this case.

Absolute Anchorage

This type of anchorage is needed in a treatment when there is 0% movement of posterior teeth forward and 100% movement of anterior teeth backwards. This type of anchorage is usually produced by using mini-implants or temporary anchorage devices.

Classification based on implant

Orthodontic mini-implants can be used for the purpose of anchorage in an orthodontic treatment. The implants can be used to provide either direct or indirect anchorage.[6]

Direct Anchorage

In this type of setup, orthodontic force is applied directly from the implant to one or multiple teeth. In this type of anchorage, the location of the implant plays a very important role due to different force vectors being affected.

Indirect Anchorage

In this type of setup, an implant is used to stabilize one or multiple teeth into a unit. An orthodontic force is then used against this unit to move single or multiple teeth. In this setup, the location of the implant is not as important as long as the implant is stable.

Classification based on bone

Cortical Anchorage

Cortical bone is known to resorb slower than the medullary bone. Therefore, cortical anchorage is used in orthodontics to allow for slower movement of teeth, especially molars in the posterior dentition.[7] A clinician may produce a movement which allows the buccal roots of the permanent molars to move buccally (outside), eventually contacting the cortical bone. It is claimed that by using cortical bone against posterior teeth, mesial movement of posterior teeth can be prevented which helps in anchoring the posterior teeth in the back of the jaw.

Idea of cortical bone anchorage is intensively used in Bioprogressive Therapy of Robert M. Ricketts who recommended using the cortical bone to slow the movement of the molar teeth in high anchorage cases.[8]

References

  1. Book: aa. By Ravindra Nanda – Temporary Anchorage Devices in Orthodontics. 1994-01-01. Elsevier Health Sciences. 23379th.
  2. Prezzano. Wilbur J.. 1951-09-01. Anchorage and the mandibular arch. American Journal of Orthodontics. 37. 9. 688–697. 10.1016/0002-9416(51)90180-7. 14868756.
  3. Book: Rachala, Madhukar Reddy. Microimplants in Orthodontics: Temporary Anchorage Device. 2011-12-12. LAP LAMBERT Academic Publishing. 9783847312062. S.l.. English.
  4. Roberts-Harry. D.. Sandy. J.. 2004-03-13. Orthodontics. Part 9: Anchorage control and distal movement. British Dental Journal. en. 196. 5. 255–263. 10.1038/sj.bdj.4811031. 15017408. 36848924. 0007-0610.
  5. Book: Nanda, Ravindra. Biomechanics and Esthetic Strategies in Clinical Orthodontics. 2005-04-12. Elsevier Health Sciences. 978-1455726110. en.
  6. Wehrbein. Heiner. Göllner. Peter. 2007-11-01. Skeletal anchorage in orthodontics--basics and clinical application. Journal of Orofacial Orthopedics. 68. 6. 443–461. 10.1007/s00056-007-0725-y. 1434-5293. 18034286. 39899842.
  7. 1992-07-01. The effectiveness of cortical anchorage in patients treated with Class II elastics: Gary Pulsipher Department of Orthodontics, University of Illinois, 1991. American Journal of Orthodontics and Dentofacial Orthopedics. 102. 1. 97. 10.1016/S0889-5406(05)80990-4.
  8. Urias. Dayse. Mustafa. Fatima Ibrahim Abdel. 2009-07-15. Anchorage Control in Bioprogressive vs Straight-wire Treatment. The Angle Orthodontist. 75. 6. 987–92. EN. 16448242.