Two-pore-domain potassium channel explained

The two-pore-domain or tandem pore domain potassium channels are a family of 15 members that form what is known as leak channels which possess Goldman-Hodgkin-Katz (open) rectification.[1] These channels are regulated by several mechanisms including signaling lipids, oxygen tension, pH, mechanical stretch, and G-proteins. Two-pore-domain potassium channels correspond structurally to a inward-rectifier potassium channel α-subunits. Each inward-rectifier potassium channel α-subunit is composed of two transmembrane α-helices, a pore helix and a potassium ion selectivity filter sequence and assembles into a tetramer forming the complete channel.[2] The two-pore domain potassium channels instead are dimers where each subunit is essentially two α-subunits joined together.[3]

Each single channel does not have two pores; the name of the channel comes from the fact that each subunit has two P (pore) domains in its primary sequence.[4] To quote Rang and Dale (2015), "The nomenclature is misleading, especially when they are incorrectly referred to as two-pore channels".[5]

A decrease in these leak channels activity is known as 'channel arrest', which reduces oxygen consumption[6] and allows animals to survive anoxia.[7]

Below is a list of the 15 known two-pore-domain human potassium channels:[1]

Gene Channel[8] Family Aliases - TWIK[9] [10] TWIK-1 - TREK TREK-1 - TASK TASK-1 - TREK TRAAK[11] - TASK TASK-2[12] - TWIK TWIK-2 - TWIK - TASK TASK-3 - TREK TREK-2 - THIK THIK-2 - THIK THIK-1 - TASK TASK-5 - TALK TALK-1 - TALK TALK-2, TASK-4 - TRIK, TRESK[13] [14]
K2P1
Uniprot:O00180
Hgncid:6272
Refseq:NP_002236.1
Symbol:K2P1
K2P2
Uniprot:O95069
Hgncid:6277
Refseq:NP_055032.1
Symbol:K2P2
K2P3
Uniprot:O14649
Hgncid:6278
Refseq:NP_002237.1
Symbol:K2P3

See also

External links

Notes and References

  1. Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S . International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels . Pharmacological Reviews . 57 . 4 . 527–540 . December 2005 . 16382106 . 10.1124/pr.57.4.12 . 7356601 .
  2. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R . 6 . The structure of the potassium channel: molecular basis of K+ conduction and selectivity . Science . 280 . 5360 . 69–77 . April 1998 . 9525859 . 10.1126/science.280.5360.69 . 1998Sci...280...69D .
  3. Miller AN, Long SB . Crystal structure of the human two-pore domain potassium channel K2P1 . Science . 335 . 6067 . 432–436 . January 2012 . 22282804 . 10.1126/science.1213274 . 2012Sci...335..432M . 206537279 .
  4. Web site: Baggetta AM, Bayliss DA, Czirják G, Enyedi P, Goldstein SA, Lesage F, Minor Jr DL, Plant LD, Sepúlveda F . . Two P domain potassium channels . 2019-05-28.
  5. Book: Pharmacology. Rang HP . Churchill Livingstone. 2003. 978-0-443-07145-4. 8. Edinburgh. 59.
  6. Lutz . Peter L. . Milton . Sarah L. . 2004-08-15 . Negotiating brain anoxia survival in the turtle . Journal of Experimental Biology . en . 207 . 18 . 3141–3147 . 10.1242/jeb.01056 . 1477-9145.
  7. Welker . Alexis F. . Moreira . Daniel C. . Campos . Élida G. . Hermes-Lima . Marcelo . August 2013 . Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability . Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology . en . 165 . 4 . 384–404 . 10.1016/j.cbpa.2013.04.003. 23587877 .
  8. Gutman GA, Chandy KG, Adelman JP, Aiyar J, Bayliss DA, Clapham DE, Covarriubias M, Desir GV, Furuichi K, Ganetzky B, Garcia ML, Grissmer S, Jan LY, Karschin A, Kim D, Kuperschmidt S, Kurachi Y, Lazdunski M, Lesage F, Lester HA, McKinnon D, Nichols CG, O'Kelly I, Robbins J, Robertson GA, Rudy B, Sanguinetti M, Seino S, Stuehmer W, Tamkun MM, Vandenberg CA, Wei A, Wulff H, Wymore RS . 6 . International Union of Pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels . Pharmacological Reviews . 55 . 4 . 583–586 . December 2003 . 14657415 . 10.1124/pr.55.4.9 . 34963430 .
  9. Enyedi P, Czirják G . Molecular background of leak K+ currents: two-pore domain potassium channels . Physiological Reviews . 90 . 2 . 559–605 . April 2010 . 20393194 . 10.1152/physrev.00029.2009 .
  10. Lotshaw DP . Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels . Cell Biochemistry and Biophysics . 47 . 2 . 209–256 . 2007 . 17652773 . 10.1007/s12013-007-0007-8 . 12759521 .
  11. Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, Lazdunski M . A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids . The EMBO Journal . 17 . 12 . 3297–3308 . June 1998 . 9628867 . 1170668 . 10.1093/emboj/17.12.3297 .
  12. Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N . Potassium leak channels and the KCNK family of two-P-domain subunits . Nature Reviews. Neuroscience . 2 . 3 . 175–184 . March 2001 . 11256078 . 10.1038/35058574 . 9682396 .
  13. Sano Y, Inamura K, Miyake A, Mochizuki S, Kitada C, Yokoi H, Nozawa K, Okada H, Matsushime H, Furuichi K . 6 . A novel two-pore domain K+ channel, TRESK, is localized in the spinal cord . The Journal of Biological Chemistry . 278 . 30 . 27406–27412 . July 2003 . 12754259 . 10.1074/jbc.M206810200 . free .
  14. Czirják G, Tóth ZE, Enyedi P . The two-pore domain K+ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin . The Journal of Biological Chemistry . 279 . 18 . 18550–18558 . April 2004 . 14981085 . 10.1074/jbc.M312229200 . free .