Euarchontoglires Explained

Euarchontoglires (from: Euarchonta ("true rulers") + Glires ("dormice")), synonymous with Supraprimates, is a clade and a superorder of placental mammals, the living members of which belong to one of the five following groups: rodents, lagomorphs, treeshrews, primates, and colugos.

Evolutionary affinities within mammals

The Euarchontoglires clade is based on DNA sequence analyses and retrotransposon markers that combine the clades Glires (Rodentia + Lagomorpha) and Euarchonta (Scandentia + Primates + Dermoptera).[1] It is usually discussed without a taxonomic rank but has been called a cohort, magnorder, or superorder. Relations among the four cohorts (Euarchontoglires, Xenarthra, Laurasiatheria, Afrotheria) and the identity of the placental root remain controversial.[2] [3]

So far, few, if any, distinctive anatomical features have been recognized that support Euarchontoglires; nor does any strong evidence from anatomy support alternative hypotheses. Although both Euarchontoglires and diprotodont marsupials are documented to possess a vermiform appendix, this feature evolved as a result of convergent evolution.[4]

Euarchontoglires probably split from the Boreoeutheria magnorder about 85 to 95 million years ago, during the Cretaceous, and developed in the Laurasian island group that would later become Europe. This hypothesis is supported by molecular evidence; so far, the earliest known fossils date to the early Paleocene.[5] The combined clade of Euarchontoglires and Laurasiatheria is recognized as Boreoeutheria.

Phylogenetic relationships within the clade

The hypothesized relationship among the Euarchontoglires is as follows:[6]

One study based on DNA analysis suggests that Scandentia and Primates are sister clades, but does not discuss the position of Dermoptera.[7] Although it is known that Scandentia is one of the most basal Euarchontoglires clades, the exact phylogenetic position is not yet considered resolved, and it may be a sister of Glires, Primatomorpha or Dermoptera or to all other Euarchontoglires.[8] [3] [9] Some old studies place Scandentia as sister of the Glires, invalidating Euarchonta.[10] [11]

Whole-genome duplication may have taken place in the ancestral Euarchontoglires.[12]

Further reading

Notes and References

  1. Murphy . William J. . Eizirik . Eduardo . O'Brien . Stephen J. . Madsen . Ole . Scally . Mark . Douady . Christophe J. . Teeling . Emma . Ryder . Oliver A. . Stanhope . Michael J. . de Jong . Wilfried W. . Springer . Mark S. . Resolution of the early placental mammal radiation using Bayesian phylogenetics . 10.1126/science.1067179 . . 294 . 5550 . 2348–2351 . 2001 . 11743200. 2001Sci...294.2348M . 34367609 .
  2. Asher . RJ . Bennett . N . Lehmann . T . 2009 . The new framework for understanding placental mammal evolution . BioEssays . 31 . 8 . 853–864 . 10.1002/bies.200900053 . 19582725. free .
  3. Kumar . Vikas . Hallström . Björn M. . Janke . Axel . 2013-04-01 . Coalescent-Based Genome Analyses Resolve the Early Branches of the Euarchontoglires . PLOS ONE . 8 . 4 . e60019 . 10.1371/journal.pone.0060019 . 1932-6203 . 3613385 . 23560065. free . 2013PLoSO...860019K .
  4. Smith . H. F. . Fisher . R. E. . Everett . M. L. . Thomas . A. D. . Randal-Bollinger . R. . Parker . W. . 10.1111/j.1420-9101.2009.01809.x . Comparative anatomy and phylogenetic distribution of the mammalian cecal appendix . . 22 . 10 . 1984–1999 . October 2009 . 19678866. free .
  5. O'Leary . M. A. . Bloch . J. I. . Flynn . J. J. . Gaudin . T. J. . Giallombardo . A. . Giannini . N. P. . Cirranello . A. L. . 206544776 . 2013 . The placental mammal ancestor and the post–K-Pg radiation of placentals . Science . 339 . 6120 . 662–667 . 10.1126/science.1229237 . 23393258. 2013Sci...339..662O . 11336/7302 . free .
  6. Esselstyn. Jacob A.. Oliveros. Carl H.. Swanson. Mark T.. Faircloth. Brant C.. 2017-08-26. Investigating Difficult Nodes in the Placental Mammal Tree with Expanded Taxon Sampling and Thousands of Ultraconserved Elements . Genome Biology and Evolution . 9. 9. 2308–2321. 10.1093/gbe/evx168 . 5604124. 28934378.
  7. Song S, Liu L, Edwards SV, Wu S . 2012 . Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model . Proceedings of the National Academy of Sciences . 109 . 37 . 14942–7 . 10.1073/pnas.1211733109 . 22930817 . 3443116 . free . 2012PNAS..10914942S .
  8. Foley . Nicole M. . Springer . Mark S. . Teeling . Emma C. . 2016-07-19 . Mammal madness: Is the mammal tree of life not yet resolved? . Philosophical Transactions of the Royal Society B . 371 . 1699 . 20150140 . 10.1098/rstb.2015.0140 . 0962-8436 . 4920340 . 27325836.
  9. Zhou . Xuming . Sun . Fengming . Xu . Shixia . Yang . Guang . Li . Ming . 2015-03-01 . The position of tree shrews in the mammalian tree: Comparing multi-gene analyses with phylogenomic results leaves monophyly of Euarchonta doubtful . Integrative Zoology . 10 . 2 . 186–198 . 10.1111/1749-4877.12116 . 25311886 . 1749-4877.
  10. Meredith . Robert W. . Janečka . Jan E. . Gatesy . John. Ryder . Oliver A. . Fisher . Colleen A. . Teeling . Emma C. . Goodbla. Alisha . Eizirik . Eduardo . Simão . Taiz L. L. . 2011-10-28 . Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification . Science . 334 . 6055 . 521–524 . 10.1126/science.1211028 . 0036-8075 . 21940861. 2011Sci...334..521M . 38120449 .
  11. Zhou . Xuming . Sun . Fengming . Xu . Shixia . Yang . Guang . Li . Ming . 2015-03-01 . The position of tree shrews in the mammalian tree: Comparing multi-gene analyses with phylogenomic results leaves monophyly of Euarchonta doubtful . Integrative Zoology . 10 . 2 . 186–198 . 10.1111/1749-4877.12116 . 25311886 . 1749-4877.
  12. Dehal. Paramvir. Boore. Jeffrey L.. 2005-09-06. Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate . PLOS Biology . 3. 10. e314. 10.1371/journal.pbio.0030314. 1545-7885. 1197285. 16128622 . free .