In the theory of computation, the Sudan function is an example of a function that is recursive, but not primitive recursive. This is also true of the better-known Ackermann function.
In 1926, David Hilbert conjectured that every computable function was primitive recursive. This was refuted by Gabriel Sudan and Wilhelm Ackermann both his students using different functions that were published in quick succession: Sudan in 1927, Ackermann in 1928.
The Sudan function is the earliest published example of a recursive function that is not primitive recursive.
\begin{array}{lll} F0(x,y)&=x+y\\ Fn+1(x,0)&=x&ifn\ge0\\ Fn+1(x,y+1)&=Fn(Fn+1(x,y),Fn+1(x,y)+y+1)&ifn\ge0\\ \end{array}
\begin{array}{lll} Fn+1(x,y+1)&=Fn(Fn+1(x,y),F0(Fn+1(x,y),y+1))\\ \end{array}
These equations can be used as rules of a term rewriting system (TRS).
The generalized function
F(x,y,n)\stackrel{def
\begin{array}{lll} (r1)&F(x,y,0)& → x+y\\ (r2)&F(x,0,n+1)& → x\\ (r3)&F(x,y+1,n+1)& → F(F(x,y,n+1),F(F(x,y,n+1),y+1,0),n)\\ \end{array}
At each reduction step the rightmost innermost occurrence of F is rewritten, by application of one of the rules (r1) - (r3).
Calude (1988) gives an example: compute
F(2,2,1) → *12
The reduction sequence is[1]
\underline{{F(2,2,1)}} | |
→ r3F(F(2,1,1),F(\underline{{F(2,1,1)}},2,0),0) | |
→ r3F(F(2,1,1),F(F(F(2,0,1),F(\underline{{F(2,0,1)}},1,0),0),2,0),0) | |
→ r2F(F(2,1,1),F(F(F(2,0,1),\underline{{F(2,1,0)}},0),2,0),0) | |
→ r1F(F(2,1,1),F(F(\underline{{F(2,0,1)}},3,0),2,0),0) | |
→ r2F(F(2,1,1),F(\underline{{F(2,3,0)}},2,0),0) | |
→ r1F(F(2,1,1),\underline{{F(5,2,0)}},0) | |
→ r1F(\underline{{F(2,1,1)}},7,0) | |
→ r3F(F(F(2,0,1),F(\underline{{F(2,0,1)}},1,0),0),7,0) | |
→ r2F(F(F(2,0,1),\underline{{F(2,1,0)}},0),7,0) | |
→ r1F(F(\underline{{F(2,0,1)}},3,0),7,0) | |
→ r2F(\underline{{F(2,3,0)}},7,0) | |
→ r1\underline{{F(5,7,0)}} | |
→ r112 |
F0(x, y) = x + y
y \ x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
4 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
5 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
6 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
7 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
8 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
9 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
10 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
F1(x, y) = 2y · (x + 2) − y − 2
y \ x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 |
2 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 |
3 | 11 | 19 | 27 | 35 | 43 | 51 | 59 | 67 | 75 | 83 | 91 |
4 | 26 | 42 | 58 | 74 | 90 | 106 | 122 | 138 | 154 | 170 | 186 |
5 | 57 | 89 | 121 | 153 | 185 | 217 | 249 | 281 | 313 | 345 | 377 |
6 | 120 | 184 | 248 | 312 | 376 | 440 | 504 | 568 | 632 | 696 | 760 |
7 | 247 | 375 | 503 | 631 | 759 | 887 | 1015 | 1143 | 1271 | 1399 | 1527 |
8 | 502 | 758 | 1014 | 1270 | 1526 | 1782 | 2038 | 2294 | 2550 | 2806 | 3062 |
9 | 1013 | 1525 | 2037 | 2549 | 3061 | 3573 | 4085 | 4597 | 5109 | 5621 | 6133 |
10 | 2036 | 3060 | 4084 | 5108 | 6132 | 7156 | 8180 | 9204 | 10228 | 11252 | 12276 |
y \ x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
x | ||||||||
1 | F1 (F2(0, 0), F2(0, 0)+1) | F1 (F2(1, 0), F2(1, 0)+1) | F1 (F2(2, 0), F2(2, 0)+1) | F1 (F2(3, 0), F2(3, 0)+1) | F1 (F2(4, 0), F2(4, 0)+1) | F1 (F2(5, 0), F2(5, 0)+1) | F1 (F2(6, 0), F2(6, 0)+1) | F1 (F2(7, 0), F2(7, 0)+1) |
F1(0, 1) | F1(1, 2) | F1(2, 3) | F1(3, 4) | F1(4, 5) | F1(5, 6) | F1(6, 7) | F1(7, 8) | |
1 | 8 | 27 | 74 | 185 | 440 | 1015 | 2294 | |
2x+1 · (x + 2) − x − 3 ≈ 10lg 2·(x+1) + lg(x+2) | ||||||||
2 | F1 (F2(0, 1), F2(0, 1)+2) | F1 (F2(1, 1), F2(1, 1)+2) | F1 (F2(2, 1), F2(2, 1)+2) | F1 (F2(3, 1), F2(3, 1)+2) | F1 (F2(4, 1), F2(4, 1)+2) | F1 (F2(5, 1), F2(5, 1)+2) | F1 (F2(6, 1), F2(6, 1)+2) | F1 (F2(7, 1), F2(7, 1)+2) |
F1(1, 3) | F1(8, 10) | F1(27, 29) | F1(74, 76) | F1(185, 187) | F1(440, 442) | F1(1015, 1017) | F1(2294, 2296) | |
19 | 10228 | 15569256417 | ≈ 5,742397643 · 1024 | ≈ 3,668181327 · 1058 | ≈ 5,019729940 · 10135 | ≈ 1,428323374 · 10309 | ≈ 3,356154368 · 10694 | |
22x+1·(x+2) − x − 1 · (2x+1·(x+2) − x − 1) − (2x+1·(x+2) − x + 1) ≈ 10lg 2 · (2x+1·(x+2) − x − 1) + lg(2x+1·(x+2) − x − 1) ≈ 10lg 2 · 2x+1·(x+2) + lg(2x+1·(x+2)) ≈ 10lg 2 · (2x+1·(x+2)) = 1010lg lg 2 + lg 2·(x+1) + lg(x+2) ≈ 1010lg 2·(x+1) + lg(x+2) | ||||||||
3 | F1 (F2(0, 2), F2(0, 2)+3) | F1 (F2(1, 2), F2(1, 2)+3) | F1 (F2(2, 2), F2(2, 2)+3) | F1 (F2(3, 2), F2(3, 2)+3) | F1 (F2(4, 2), F2(4, 2)+3) | F1 (F2(5, 2), F2(5, 2)+3) | F1 (F2(6, 2), F2(6, 2)+3) | F1 (F2(7, 2), F2(7, 2)+3) |
F1(F1(1,3), F1(1,3)+3) | F1(F1(8,10), F1(8,10)+3) | F1(F1(27,29), F1(27,29)+3) | F1(F1(74,76), F1(74,76)+3) | F1(F1(185,187), F1(185,187)+3) | F1(F1(440,442), F1(440,442)+3) | F1(F1(1015,1017), F1(1015,1017)+3) | F1(F1(2294,2297), F1(2294,2297)+3) | |
F1(19, 22) | F1(10228, 10231) | F1(15569256417, 15569256420) | F1(≈6·1024, ≈6·1024) | F1(≈4·1058, ≈4·1058) | F1(≈5·10135, ≈5·10135) | F1(≈10309, ≈10309) | F1(≈3·10694, ≈3·10694) | |
88080360 | ≈ 7,04 · 103083 | ≈ 7,82 · 104686813201 | ≈ 101,72·1024 | ≈ 101,10·1058 | ≈ 101,51·10135 | ≈ 104,30·10308 | ≈ 101,01·10694 | |
longer expression, starts with 222x+1 an, ≈ 101010lg 2·(x+1) + lg(x+2) | ||||||||
4 | F1 (F2(0, 3), F2(0, 3)+4) | F1 (F2(1, 3), F2(1, 3)+4) | F1 (F2(2, 3), F2(2, 3)+4) | F1 (F2(3, 3), F2(3, 3)+4) | F1 (F2(4, 3), F2(4, 3)+4) | F1 (F2(5, 3), F2(5, 3)+4) | F1 (F2(6, 3), F2(6, 3)+4) | F1 (F2(7, 3), F2(7, 3)+4) |
F1 (F1(19, 22), F1(19, 22)+4) | F1 (F1(10228, 10231), F1(10228, 10231)+4) | F1 (F1(15569256417, 15569256420), F1(15569256417, 15569256420)+4) | F1 (F1(≈5,74·1024, ≈5,74·1024), F1(≈5,74·1024, ≈5,74·1024)) | F1 (F1(≈3,67·1058, ≈3,67·1058), F1(≈3,67·1058, ≈3,67·1058)) | F1 (F1(≈5,02·10135, ≈5,02·10135), F1(≈5,02·10135, ≈5,02·10135)) | F1 (F1(≈1,43·10309, ≈1,43·10309), F1(≈1,43·10309, ≈1,43·10309)) | F1 (F1(≈3,36·10694, ≈3,36·10694), F1(≈3,36·10694, ≈3,36·10694)) | |
F1(88080360, 88080364) | F1(10230·210231−10233, 10230·210231−10229) | |||||||
≈ 3,5 · 1026514839 | ||||||||
much longer expression, starts with 2222x+1 an, ≈ 10101010lg 2·(x+1) + lg(x+2) |
y \ x | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 |
x | |||||
1 | F2 (F3(0, 0), F3(0, 0)+1) | F2 (F3(1, 0), F3(1, 0)+1) | F2 (F3(2, 0), F3(2, 0)+1) | F2 (F3(3, 0), F3(3, 0)+1) | F2 (F3(4, 0), F3(4, 0)+1) |
F2(0, 1) | F2(1, 2) | F2(2, 3) | F2(3, 4) | F2(4, 5) | |
1 | 10228 | ≈ 7,82 · 104686813201 | |||
No closed expressions possible within the framework of normal mathematical notation | |||||
2 | F3 (F4(0, 1), F4(0, 1)+2) | F3 (F4(1, 1), F4(1, 1)+2) | F3 (F4(2, 1), F4(2, 1)+2) | F3 (F4(3, 1), F4(3, 1)+2) | F3 (F4(4, 1), F4(4, 1)+2) |
F3 (1, 3) | F3 (10228, 10230) | F3 (≈104686813201, ≈104686813201) | |||
No closed expressions possible within the framework of normal mathematical notation |