In mathematics, the Sturm series associated with a pair of polynomials is named after Jacques Charles François Sturm.
See also: Sturm chain. Let
p0
p1
p0
p1
pi:=pi+1qi+1-pi+2fori\geq0.
pi+2
Let us see now Sturm series
p0,p1,...,pk
P
λ
P(λ)=a0λk+a1λk-1+ … +ak-1λ+ak
ai
i
\{1,...,k\}
R(Z)
Z
P(\imath\mu)
\imathk
\imath
\sqrt{-1}
\begin{align} p0(\mu)&:=\Re\left(
P(\imath\mu) | |
\imathk |
\right)=a0\muk-a2\muk-2+a4\muk-4\pm … \\ p1(\mu)&:=-\Im\left(
P(\imath\mu) | |
\imathk |
\right)=a1\muk-1-a3\muk-3+a5\muk-5\pm … \end{align}
The remaining terms are defined with the above relation. Due to the special structure of these polynomials, they can be written in the form:
pi(\mu)=ci,0\muk-i+ci,1\muk-i-2+ci,2\muk-i-4+ …
qi
(ci-1,0/ci,0)\mu
ci,0 ≠ 0
pi
ci,j
ci+1,j=ci,j+1
ci-1,0 | |
ci,0 |
-ci-1,j+1=
1 | |
ci,0 |
\det \begin{pmatrix} ci-1,0&ci-1,j+1\\ ci,0&ci,j+1\end{pmatrix}.
ci,0=0
i
qi
pi
ph
h<k