In mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the unsigned Stirling numbers of the first kind count permutations according to their number of cycles (counting fixed points as cycles of length one).[1]
The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices. This article is devoted to specifics of Stirling numbers of the first kind. Identities linking the two kinds appear in the article on Stirling numbers.
Signed Stirling numbers of the first kind are the coefficients
s(n,k)
(x)n=x(x-1)(x-2) … (x-n+1)
into powers of the variable
x
(x)n=
n | |
\sum | |
k=0 |
s(n,k)xk,
For example,
(x)3=x(x-1)(x-2)=x3-3x2+2x
s(3,3)=1
s(3,2)=-3
s(3,1)=2
The unsigned Stirling numbers may also be defined algebraically as the coefficients of the rising factorial:
x\overline{n
The notations used on this page for Stirling numbers are not universal, and may conflict with notations in other sources; the square bracket notation
\left[{n\atopk}\right]
Subsequently, it was discovered that the absolute values
|s(n,k)|
c(n,k)
\left[{n\atopk}\right]
n
k
For example, of the
3!=6
123
(1)(2)(3)
132=(1)(23)
213=(12)(3)
321=(13)(2)
312=(132)
231=(123)
\left[{3\atop3}\right]=1
\left[{3\atop2}\right]=3,
\left[{3\atop1}\right]=2
s(n,k)
n=3
\left[{4\atop2}\right]=11
(\bullet\bullet)(\bullet\bullet)
and 8 permutations of the form
(\bullet\bullet\bullet)(\bullet)
\left[{n\atopk}\right]
n
k
The signs of the signed Stirling numbers of the first kind depend only on the parity of .
s(n,k)=(-1)n-k\left[{n\atopk}\right].
The unsigned Stirling numbers of the first kind follow the recurrence relation
\left[{n+1\atopk}\right]=n\left[{n\atopk}\right]+\left[{n\atopk-1}\right]
for
k>0
\left[{0\atop0}\right]=1 and \left[{n\atop0}\right]=\left[{0\atopn}\right]=0
n>0
It follows immediately that the signed Stirling numbers of the first kind satisfy the recurrence
s(n+1,k)=-n ⋅ s(n,k)+s(n,k-1)
Below is a triangular array of unsigned values for the Stirling numbers of the first kind, similar in form to Pascal's triangle. These values are easy to generate using the recurrence relation in the previous section.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||||||||||||
0 | 1 | |||||||||||||||||||||
1 | 0 | 1 | ||||||||||||||||||||
2 | 0 | 1 | 1 | |||||||||||||||||||
3 | 0 | 2 | 3 | 1 | ||||||||||||||||||
4 | 0 | 6 | 11 | 6 | 1 | |||||||||||||||||
5 | 0 | 24 | 50 | 35 | 10 | 1 | ||||||||||||||||
6 | 0 | 120 | 274 | 225 | 85 | 15 | 1 | |||||||||||||||
7 | 0 | 720 | 1764 | 1624 | 735 | 175 | 21 | 1 | ||||||||||||||
8 | 0 | 5040 | 13068 | 13132 | 6769 | 1960 | 322 | 28 | 1 | |||||||||||||
9 | 0 | 40320 | 109584 | 118124 | 67284 | 22449 | 4536 | 546 | 36 | 1 | ||||||||||||
10 | 0 | 362880 | 1026576 | 1172700 | 723680 | 269325 | 63273 | 9450 | 870 | 45 | 1 | |||||||||||
Using the Kronecker delta one has,
\left[{n\atop0}\right]=\deltan
and
\left[{0\atopk}\right]=0
k>0
\left[{n\atopk}\right]=0
Also
\left[{n\atop1}\right]=(n-1)!, \left[{n\atopn}\right]=1, \left[{n\atopn-1}\right]={n\choose2},
and
\left[{n\atopn-2}\right]=
3n-1 | |
4 |
{n\choose3} and \left[{n\atopn-3}\right]={n\choose2}{n\choose4}.
Similar relationships involving the Stirling numbers hold for the Bernoulli polynomials. Many relations for the Stirling numbers shadow similar relations on the binomial coefficients. The study of these 'shadow relationships' is termed umbral calculus and culminates in the theory of Sheffer sequences. Generalizations of the Stirling numbers of both kinds to arbitrary complex-valued inputs may be extended through the relations of these triangles to the Stirling convolution polynomials.[4]
Note that all the combinatorial proofs above use either binomials or multinomials of
n
Therefore if
p
p |\left[{p\atopk}\right]
1<k<p
Since the Stirling numbers are the coefficients of a polynomial with roots 0, 1, ...,, one has by Vieta's formulas that
In other words, the Stirling numbers of the first kind are given by elementary symmetric polynomials evaluated at 0, 1, ..., .[5] In this form, the simple identities given above take the form
and so on.
One may produce alternative forms for the Stirling numbers of the first kind with a similar approach preceded by some algebraic manipulation: since
(x+1)(x+2) … (x+n-1)=(n-1)! ⋅ (x+1)\left(
x | |
2 |
+1\right) … \left(
x | |
n-1 |
+1\right),
it follows from Newton's formulas that one can expand the Stirling numbers of the first kind in terms of generalized harmonic numbers. This yields identities like
\left[{n\atop2}\right]=(n-1)! Hn-1,
\left[{n\atop3}\right]=
1 | |
2 |
(n-1)!\left[(Hn-1)2-
(2) | |
H | |
n-1 |
\right]
\left[{n\atop4}\right]=
1 | |
3! |
(n-1)!\left[(Hn-1)3-3Hn-1
(2) | |
H | |
n-1 |
(3) | |
+2H | |
n-1 |
\right],
Hn=
1 | |
1 |
+
1 | |
2 |
+\ldots+
1 | |
n |
These relations can be generalized to give
1 | |
(n-1)! |
\left[\begin{matrix}n\ k+1\end{matrix}\right]=
n-1 | |
\sum | |
i1=1 |
n-1 | |
\sum | |
i2=i1+1 |
…
n-1 | |
\sum | |
ik=ik-1+1 |
1 | |
i1i2 … ik |
=
w(n,k) | |
k! |
w(n,m)=\deltam,+
m-1 | |
\sum | |
k=0 |
(1-m)k
(k+1) | |
H | |
n-1 |
w(n,m-1-k).
(m)k
For fixed
n\geq0
1 | |
n! |
\left[\begin{matrix}n+1\ k\end{matrix}\right]=
k]\exp\left(\sum | |
[x | |
m\geq1 |
| |||||||||||||
m |
xm\right),
where the notation
[xk]
xk
More generally, sums related to these weighted harmonic number expansions of the Stirling numbers of the first kind can be defined through generalized zeta series transforms of generating functions.[8] [9]
One can also "invert" the relations for these Stirling numbers given in terms of the
k
k=2,3
(n!)2 ⋅
(2) | |
H | |
n |
=\left[\begin{matrix}n+1\ 2\end{matrix}\right]2-2\left[\begin{matrix}n+1\ 1\end{matrix}\right]\left[\begin{matrix}n+1\ 3\end{matrix}\right]
(n!)3 ⋅
(3) | |
H | |
n |
=\left[\begin{matrix}n+1\ 2\end{matrix}\right]3-3\left[\begin{matrix}n+1\ 1\end{matrix}\right]\left[\begin{matrix}n+1\ 2\end{matrix}\right]\left[\begin{matrix}n+1\ 3\end{matrix}\right]+3\left[\begin{matrix}n+1\ 1\end{matrix}\right]2\left[\begin{matrix}n+1\ 4\end{matrix}\right].
More generally, one can invert the Bell polynomial generating function for the Stirling numbers expanded in terms of the
m
m\geq2
(m) | |
H | |
n |
=-m x
m]log\left(1+\sum | |
[x | |
k\geq1 |
\left[\begin{matrix}n+1\ k+1\end{matrix}\right]
(-x)k | |
n! |
\right).
Since permutations are partitioned by number of cycles, one has
n | |
\sum | |
k=0 |
\left[{n\atopk}\right]=n!
n | |
\sum | |
k=0 |
\left[{n\atopk}\right]uk=n!\binom{n+u-1}{u-1},u>0
and
n | |
\sum | |
p=k |
{\left[{n\atopp}\right]\binom{p}{k}}=\left[{n+1\atopk+1}\right]
The table in section 6.1 of Concrete Mathematics provides a plethora of generalized forms of finite sums involving the Stirling numbers. Several particular finite sums relevant to this article include
\begin{align}\left[{n\atopm}\right]&=
n | |
\sum | |
k=m |
\left[{n+1\atopk+1}\right]\binom{k}{m}(-1)m-k\\ \left[{n+1\atopm+1}\right]&=
n | |
\sum | |
k=m |
\left[{k\atopm}\right]
n! | |
k! |
\\ \left[{m+n+1\atopm}\right]&=
m | |
\sum | |
k=0 |
(n+k)\left[{n+k\atopk}\right]\ \left[{n\atopl+m}\right]\binom{l+m}{l}&=\sumk\left[{k\atopl}\right]\left[{n-k\atopm}\right]\binom{n}{k}.\end{align}
Additionally, if we define the second-order Eulerian numbers by the triangular recurrence relation [10]
\left\langle\left\langle{n\atopk}\right\rangle\right\rangle=(k+1)\left\langle\left\langle{n-1\atopk}\right\rangle\right\rangle+(2n-1-k)\left\langle\left\langle{n-1\atopk-1}\right\rangle\right\rangle,
we arrive at the following identity related to the form of the Stirling convolution polynomials which can be employed to generalize both Stirling number triangles to arbitrary real, or complex-valued, values of the input
x
\left[{x\atopx-n}\right]=
n | |
\sum | |
k=0 |
\left\langle\left\langle{n\atopk}\right\rangle\right\rangle\binom{x+k}{2n}.
Particular expansions of the previous identity lead to the following identities expanding the Stirling numbers of the first kind for the first few small values of
n:=1,2,3
\begin{align}\left[\begin{matrix}x\ x-1\end{matrix}\right]&=\binom{x}{2}\ \left[\begin{matrix}x\ x-2\end{matrix}\right]&=\binom{x}{4}+2\binom{x+1}{4}\ \left[\begin{matrix}x\ x-3\end{matrix}\right]&=\binom{x}{6}+8\binom{x+1}{6}+6\binom{x+2}{6}.\end{align}
Software tools for working with finite sums involving Stirling numbers and Eulerian numbers are provided by the RISC Stirling.m package utilities in Mathematica. Other software packages for guessing formulas for sequences (and polynomial sequence sums) involving Stirling numbers and other special triangles is available for both Mathematica and Sage here and here, respectively.[11]
The following congruence identity may be proved via a generating function-based approach:[12]
\begin{align}\left[\begin{matrix}n\ m\end{matrix}\right]&\equiv\binom{\lfloorn/2\rfloor}{m-\lceiln/2\rceil}=[xm]\left(x\lceil(x+1)\lfloor\right)&&\pmod{2},\end{align}
More recent results providing Jacobi-type J-fractions that generate the single factorial function and generalized factorial-related products lead to other new congruence results for the Stirling numbers of the first kind.[13] For example, working modulo
2
\begin{align}\left[\begin{matrix}n\ 1\end{matrix}\right]&\equiv
2n | |
4 |
[n\geq2]+[n=1]&&\pmod{2}\ \left[\begin{matrix}n\ 2\end{matrix}\right]&\equiv
3 ⋅ 2n | |
16 |
(n-1)[n\geq3]+[n=2]&&\pmod{2}\ \left[\begin{matrix}n\ 3\end{matrix}\right]&\equiv2n-7(9n-20)(n-1)[n\geq4]+[n=3]&&\pmod{2}\ \left[\begin{matrix}n\ 4\end{matrix}\right]&\equiv2n-9(3n-10)(3n-7)(n-1)[n\geq5]+[n=4]&&\pmod{2} \end{align}
Where
[b]
and working modulo
3
\begin{align}\left[\begin{matrix}n\ m\end{matrix}\right]&\equiv[xm](x\lceil(x+1)\lceil(x+2)\lfloor&&\pmod{3}\\ &\equiv
m | |
\sum | |
k=0 |
\binom{\lceil(n-1)/3\rceil}{k}\binom{\lfloorn/3\rfloor}{m-k-\lfloorn/3\rfloor}2\lceil&&\pmod{3} \end{align}
More generally, for fixed integers
h\geq3
\left(\omegah,i
h-1 | |
\right) | |
i=1 |
:=\left\{\omegaj:
h-1 | |
\sum | |
i=0 |
\binom{h-1}{i}
h! | |
(i+1)! |
i | |
(-\omega | |
j) |
=0, 1\leqj<h\right\},
then we may expand congruences for these Stirling numbers defined as the coefficients
\left[\begin{matrix}n\ m\end{matrix}\right]=[Rm]R(R+1) … (R+n-1),
in the following form where the functions,
[m] | |
p | |
h,i |
(n)
m
n
h
m
i
\left[\begin{matrix}n\ m\end{matrix}\right]=
h-1 | |
\left(\sum | |
i=0 |
[m] | |
p | |
h,i |
(n) x
n | |
\omega | |
h,i |
\right)[n>m]+[n=m] \pmod{h},
Section 6.2 of the reference cited above provides more explicit expansions related to these congruences for the
r
pn(\alpha,R):=R(R+\alpha) … (R+(n-1)\alpha)
A variety of identities may be derived by manipulating the generating function (see change of basis):
H(z,u)=(1+z)u=
infty | |
\sum | |
n=0 |
{u\choosen}zn=
infty | |
\sum | |
n=0 |
zn | |
n! |
n | |
\sum | |
k=0 |
s(n,k)uk =
infty | |
\sum | |
k=0 |
uk
infty | |
\sum | |
n=k |
zn | |
n! |
s(n,k).
Using the equality
(1+z)u=eulog(1+z)=
infty | |
\sum | |
k=0 |
(log(1+z))k
uk | |
k! |
,
infty | |
\sum | |
n=k |
s(n,k)
zn | |
n! |
=
(log(1+z))k | |
k! |
infty | |
\sum | |
n=k |
\left[{n\atopk}\right]
zn | |
n! |
=
(-log(1-z))k | |
k! |
.
This identity is valid for formal power series, and the sum converges in the complex plane for |z| < 1.
Other identities arise by exchanging the order of summation, taking derivatives, making substitutions for z or u, etc. For example, we may derive:[14]
logm(1+z) | |
1+z |
=
infty | |
m!\sum | |
k=0 |
s(k+1,m+1)zk | |
k! |
, m=1,2,3,\ldots |z|<1
infty | |
\sum | |
n=i |
\left[{n\atopi | |
\right]}{n |
(n!)}=\zeta(i+1), i=1,2,3,\ldots
infty | |
\sum | |
n=i |
\left[{n\atopi | |
\right]}{n |
(v)n}=\zeta(i+1,v), i=1,2,3,\ldots \Re(v)>0
\zeta(k)
\zeta(k,v)
1 | |
\int | |
0 |
logz(1-x) | |
xk |
dx=
(-1)z\Gamma(z+1) | |
(k-1)! |
k-1 | |
\sum | |
r=1 |
r | |
s(k-1,r)\sum | |
m=0 |
\binom{r}{m}(k-2)r-m\zeta(z+1-m), \Re(z)>k-1, k=3,4,5,\ldots
\Gamma(z)
\zeta(s,v)=
k! | |
(s-k)k |
infty | |
\sum | |
n=0 |
1 | |
(n+k)! |
\left[{n+k\atop
n+k-1 | |
n}\right]\sum | |
l=0 |
(-1)l\binom{n+k-1}{l}(l+v)k-s, k=1,2,3,\ldots
The next estimate given in terms of the Euler gamma constant applies:[17]
\left[\begin{matrix}n+1\ k+1\end{matrix}\right]\underset{n\toinfty}{\sim}
n! | |
k! |
\left(\gamma+lnn\right)k, uniformlyfork=o(lnn).
For fixed
n
\left[\begin{matrix}n+k\ k\end{matrix}\right]\underset{k\toinfty}{\sim}
k2n | |
2nn! |
.
It is well-known that we don't know any one-sum formula for Stirling numbers of the first kind. A two-sum formula can be obtained using one of the symmetric formulae for Stirling numbers in conjunction with the explicit formula for Stirling numbers of the second kind.
\left[{n\atopk}\right]=
2n-k | |
\sum | |
j=n |
\binom{j-1}{k-1}\binom{2n-k}{j}
j-n | |
\sum | |
m=0 |
(-1)m+n-kmj-k | |
m!(j-n-m)! |
As discussed earlier, by Vieta's formulas, one getThe Stirling number s(n,n-p) can be found from the formula[18]
\begin{align} s(n,n-p)&=
1 | |
(n-p-1)! |
\sum | |||||||||
|
(-1)K
(n+K-1)! | ||||||||||||||||||
|
, \end{align}
K=k1+ … +kp.
Another exact nested sum expansion for these Stirling numbers is computed by elementary symmetric polynomials corresponding to the coefficients in
x
(1+c1x) … (1+cn-1x)
\begin{align}\left[{n\atopk+1}\right]&=[xk](x+1)(x+2) … (x+n-1)=(n-1)! ⋅ [xk](x+1)\left(
x | |
2 |
+1\right) … \left(
x | |
n-1 |
+1\right)\ &=
\sum | |
1\leqi1< … <ik<n |
(n-1)! | |
i1 … ik |
.\end{align}
Newton's identities combined with the above expansions may be used to give an alternate proof of the weighted expansions involving the generalized harmonic numbers already noted above.
The nth derivative of the μth power of the natural logarithm involves the signed Stirling numbers of the first kind:
{\operatorname{d}n(lnx)\mu\over\operatorname{d}xn}=x-n
n | |
\sum | |
k=1 |
\mu\underline{k
where
\mu\underline{i}
s(n,n-k+1)
It can be proved by using mathematical induction.
Stirling numbers of the first kind appear in the formula for Gregory coefficients and in a finite sum identity involving Bell numbers[19]
n!Gn=
n | |
\sum | |
l=0 |
s(n,l) | |
l+1 |
n | |
\sum | |
j=0 |
\binom{n}{j}Bjkn-j=
k | |
\sum | |
i=0 |
\left[{k\atopi}\right]Bn+i(-1)k-i
Infinite series involving the finite sums with the Stirling numbers often lead to the special functions. For example[20]
ln\Gamma(z)=\left(z-
1 | |
2 |
\right)lnz-z+
1 | |
2 |
ln2\pi+
1 | |
\pi |
| ||||
\sum | ||||
n=1 |
\lfloorn/2\rfloor | |
\sum | |
l=0 |
(-1)l(2l)! | |
(2\piz)2l+1 |
\left[{n\atop2l+1}\right]
and
\Psi(z)=lnz-
1 | |
2z |
-
1 | |
\piz |
| ||||
\sum | ||||
n=1 |
\lfloorn/2\rfloor | |
\sum | |
l=0 |
(-1)l(2l+1)! | |
(2\piz)2l+1 |
\left[{n\atop2l+1}\right]
or even
\gamma | ||||
|
\deltam,0+
(-1)mm! | |
\pi |
| ||||
\sum | ||||
n=1 |
\lfloorn/2\rfloor | |
\sum | |
k=0 |
(-1)k | |
(2\pi)2k+1 |
\left[{2k+2\atopm+1}\right]\left[{n\atop2k+1}\right]
where γm are the Stieltjes constants and δm,0 represents the Kronecker delta function.
Notice that this last identity immediately implies relations between the polylogarithm functions, the Stirling number exponential generating functions given above, and the Stirling-number-based power series for the generalized Nielsen polylogarithm functions.
There are many notions of generalized Stirling numbers that may be defined (depending on application) in a number of differing combinatorial contexts. In so much as the Stirling numbers of the first kind correspond to the coefficients of the distinct polynomial expansions of the single factorial function,
n!=n(n-1)(n-2) … 2 ⋅ 1
In particular, for any fixed arithmetic function
f:N → C
x,t
(x)n,f,t:=
n-1 | ||
\prod | \left(x+ | |
k=1 |
f(k) | |
tk |
\right)
may be studied from the point of view of the classes of generalized Stirling numbers of the first kind defined by the following coefficients of the powers of
x
(x)n,f,t
\begin{align}\left[\begin{matrix}n\ k\end{matrix}\right]f,t&=[xk-1](x)n,f,t\ &=f(n-1)t1-n\left[\begin{matrix}n-1\ k\end{matrix}\right]f,t+\left[\begin{matrix}n-1\ k-1\end{matrix}\right]f,t+\deltan,0\deltak,0.\end{align}
These coefficients satisfy a number of analogous properties to those for the Stirling numbers of the first kind as well as recurrence relations and functional equations related to the f-harmonic numbers,
(r) | |
F | |
n |
(t):=\sumktk/f(k)r
One special case of these bracketed coefficients corresponding to
t\equiv1
n
The Stirling numbers of both kinds, the binomial coefficients, and the first and second-order Eulerian numbers are all defined by special cases of a triangular super-recurrence of the form
\left|\begin{matrix}n\ k\end{matrix}\right|=(\alphan+\betak+\gamma)\left|\begin{matrix}n-1\ k\end{matrix}\right|+(\alpha\primen+\beta\primek+\gamma\prime)\left|\begin{matrix}n-1\ k-1\end{matrix}\right|+\deltan,0\deltak,0,
for integers
n,k\geq0
\left|\begin{matrix}n\ k\end{matrix}\right|\equiv0
n<0
k<0
\alpha,\beta,\gamma,\alpha\prime,\beta\prime,\gamma\prime
\sumk\left\langle\left\langle{n\atopk}\right\rangle\right\rangle=(2n-1)(2n-3) … 1=(2n-1)!!
\{1,1,2,2,\ldots,n,n\}
k
k
1\leqk\leqn
\left\langle\left\langle{n\atopk}\right\rangle\right\rangle
k