Startup neutron source explained

A startup neutron source is a neutron source used for stable and reliable initiation of nuclear chain reaction in nuclear reactors, when they are loaded with fresh nuclear fuel, whose neutron flux from spontaneous fission is insufficient for a reliable startup, or after prolonged shutdown periods. Neutron sources ensure a constant minimal population of neutrons in the reactor core, sufficient for a smooth startup. Without them, the reactor could suffer fast power excursions during startup from state with too few self-generated neutrons (new core or after extended shutdown).

The startup sources are typically inserted in regularly spaced positions inside the reactor core, in place of some of the fuel rods.

The sources are important for safe reactor startup. The spontaneous fission and ambient radiation such as cosmic rays serve as weak neutron sources, but these are too weak for the reactor instrumentation to detect; relying on them could lead to a "blind" start, which is a potentially unsafe condition. Blind startups were used in the early days of the American nuclear submarine program, before corrosion problems of the clading of startup sources were resolved. (Leaking of the first neutron sources contaminated the reactors, making maintenance dangerous.)[1] The sources are therefore positioned so the neutron flux they produce is always detectable by the reactor monitoring instruments. When the reactor is in shutdown state, the neutron sources serve to provide signals for neutron detectors monitoring the reactor, to ensure they are operable.[2] The equilibrium level of neutron flux in a subcritical reactor is dependent on the neutron source strength; a certain minimum level of source activity therefore has to be ensured in order to maintain control over the reactor when in strongly subcritical state, namely during startups.[3]

The sources can be of two types:[4]

When plutonium-238/beryllium primary sources are utilized, they can be either affixed to control rods which are removed from the reactor when it is powered, or clad in a cadmium alloy, which is opaque to thermal neutrons (reducing transmutation of the plutonium-238 by neutron capture) but transparent to fast neutrons produced by the source.

The chain reaction in the first critical reactor, CP-1, was initiated by a radium-beryllium neutron source. Similarly, in modern reactors (after startup), delayed neutron emission from fission products suffices to sustain the amplification reaction while yielding controllable growth times. In comparison, a bomb is based on immediate neutrons and grows exponentially in nanoseconds.

Notes and References

  1. Book: Canada enters the nuclear age: a technical history of Atomic Energy of Canada Limited. 224. McGill-Queen's Press - MQUP. 1997 . 0-7735-1601-8. Atomic Energy of Canada.
  2. Neutron source
  3. Web site: Microsoft Word - lecture25.doc . 2010-03-28 . dead . https://web.archive.org/web/20110629124040/http://ocw.mit.edu/NR/rdonlyres/Nuclear-Engineering/22-05Fall-2006/4D228A81-EC19-43CD-8C8D-B4AC34851DF9/0/lecture25.pdf . June 29, 2011 .
  4. Book: Nuclear Engineering Handbook . Ken Kok. 27. CRC Press. 2009 . 978-1-4200-5390-6.
  5. Book: The radiochemistry of nuclear power plants with light water reactors. Karl-Heinz Neeb. 147. Walter de Gruyter. 1997 . 3-11-013242-7.
  6. Web site: Integrated Publishing . Neutron Sources Summary . Tpub.com . 2010-03-28.
  7. Web site: Memorandum from Raymond L. Murray to Dr. Clifford K. Beck . Lib.ncsu.edu . 2010-03-28.