Standard part function explained
In nonstandard analysis, the standard part function is a function from the limited (finite) hyperreal numbers to the real numbers. Briefly, the standard part function "rounds off" a finite hyperreal to the nearest real. It associates to every such hyperreal
, the unique real
infinitely close to it, i.e.
is
infinitesimal. As such, it is a mathematical implementation of the historical concept of
adequality introduced by
Pierre de Fermat,
[1] as well as
Leibniz's
Transcendental law of homogeneity.
The standard part function was first defined by Abraham Robinson who used the notation
for the standard part of a hyperreal
(see Robinson 1974). This concept plays a key role in defining the concepts of the calculus, such as continuity, the derivative, and the integral, in
nonstandard analysis. The latter theory is a rigorous formalization of calculations with
infinitesimals. The standard part of
x is sometimes referred to as its
shadow.
[2] Definition
Nonstandard analysis deals primarily with the pair
, where the
hyperreals
are an
ordered field extension of the reals
, and contain infinitesimals, in addition to the reals. In the hyperreal line every real number has a collection of numbers (called a
monad, or
halo) of hyperreals infinitely close to it. The standard part function associates to a finite
hyperreal x, the unique standard real number
x0 that is infinitely close to it. The relationship is expressed symbolically by writing
The standard part of any infinitesimal is 0. Thus if N is an infinite hypernatural, then 1/N is infinitesimal, and
If a hyperreal
is represented by a Cauchy sequence
in the
ultrapower construction, then
\operatorname{st}(u)=\limn\toinftyun.
More generally, each finite
defines a
Dedekind cut on the subset
(via the total order on
) and the corresponding real number is the standard part of
u.
Not internal
The standard part function "st" is not defined by an internal set. There are several ways of explaining this. Perhaps the simplest is that its domain L, which is the collection of limited (i.e. finite) hyperreals, is not an internal set. Namely, since L is bounded (by any infinite hypernatural, for instance), L would have to have a least upper bound if L were internal, but L doesn't have a least upper bound. Alternatively, the range of "st" is
, which is not internal; in fact every internal set in
that is a subset of
is necessarily
finite.
[3] Applications
All the traditional notions of calculus can be expressed in terms of the standard part function, as follows.
Derivative
The standard part function is used to define the derivative of a function f. If f is a real function, and h is infinitesimal, and if f′(x) exists, then
f'(x)=\operatorname{st}\left(
Alternatively, if
, one takes an infinitesimal increment
, and computes the corresponding
\Deltay=f(x+\Deltax)-f(x)
. One forms the ratio
. The derivative is then defined as the standard part of the ratio:
=\operatorname{st}\left(
\right).
Integral
Given a function
on
, one defines the integral
as the standard part of an infinite Riemann sum
when the value of
is taken to be infinitesimal, exploiting a
hyperfinite partition of the interval [''a'',''b''].
Limit
Given a sequence
, its limit is defined by
where
is an infinite index. Here the limit is said to exist if the standard part is the same regardless of the infinite index chosen.
Continuity
A real function
is continuous at a real point
if and only if the composition
is
constant on the
halo of
. See
microcontinuity for more details.
See also
Further reading
- H. Jerome Keisler. . First edition 1976; 2nd edition 1986. (This book is now out of print. The publisher has reverted the copyright to the author, who has made available the 2nd edition in .pdf format available for downloading at http://www.math.wisc.edu/~keisler/calc.html.)
- Abraham Robinson. Non-standard analysis. Reprint of the second (1974) edition. With a foreword by Wilhelmus A. J. Luxemburg. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1996. xx+293 pp.
Notes and References
- Katz . Karin Usadi . Katz . Mikhail G. . A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography . Foundations of Science . March 2012 . 17 . 1 . 51–89 . 10.1007/s10699-011-9223-1 . The authors refer to the Fermat-Robinson standard part.. 1104.0375 .
- Bascelli . Tiziana . Bottazzi . Emanuele . Herzberg . Frederik . Kanovei . Vladimir . Katz . Karin U. . Katz . Mikhail G. . Nowik . Tahl . Sherry . David . Shnider . Steven . Fermat, Leibniz, Euler, and the Gang: The True History of the Concepts of Limit and Shadow . Notices of the American Mathematical Society . 1 September 2014 . 61 . 8 . 848 . 10.1090/noti1149 .
- Book: Goldblatt . Robert . Lectures on the Hyperreals: An Introduction to Nonstandard Analysis . Graduate Texts in Mathematics . 1998 . 188 . Springer . New York . 10.1007/978-1-4612-0615-6 . 978-0-387-98464-3 . en.