Smith–Helmholtz invariant explained

In optics the Smith–Helmholtz invariant is an invariant quantity for paraxial beams propagating through an optical system. Given an object at height

\bar{y}

and an axial ray passing through the same axial position as the object with angle

u

, the invariant is defined by[1] [2] [3]

H=n\bar{y}u

,where

n

is the refractive index. For a given optical system and specific choice of object height and axial ray, this quantity is invariant under refraction. Therefore, at the

i

th conjugate image point with height

\bar{y}i

and refracted axial ray with angle

ui

in medium with index of refraction

ni

we have

H=ni\bar{y}iui

. Typically the two points of most interest are the object point and the final image point.

The Smith–Helmholtz invariant has a close connection with the Abbe sine condition. The paraxial version of the sine condition is satisfied if the ratio

nu/n'u'

is constant, where

u

and

n

are the axial ray angle and refractive index in object space and

u'

and

n'

are the corresponding quantities in image space. The Smith–Helmholtz invariant implies that the lateral magnification,

y/y'

is constant if and only if the sine condition is satisfied.[4]

The Smith–Helmholtz invariant also relates the lateral and angular magnification of the optical system, which are

y'/y

and

u'/u

respectively. Applying the invariant to the object and image points implies the product of these magnifications is given by[5]
y'
y
u'
u

=

n
n'

The Smith–Helmholtz invariant is closely related to the Lagrange invariant and the optical invariant. The Smith–Helmholtz is the optical invariant restricted to conjugate image planes.

See also

Notes and References

  1. Book: Born . Max . Wolf . Emil . . 1980 . Pergamon Press . 978-0-08-026482-0 . 164–166 . 6th.
  2. Web site: Newport . Technical Note: Lens Fundamentals . 16 April 2020.
  3. Book: Kingslake . Rudolf . Lens design fundamentals . 2010 . Elsevier/Academic Press . Amsterdam . 9780819479396 . 63–64 . 2nd.
  4. Book: Jenkins . Francis A. . White . Harvey E. . Fundamentals of optics . 3 December 2001 . McGraw-Hill . 0072561912 . 173–176 . 4th.
  5. Book: Born . Max . Wolf . Emil . . 1980 . Pergamon Press . 978-0-08-026482-0 . 164–166 . 6th.