Silverman–Toeplitz theorem explained

In mathematics, the Silverman–Toeplitz theorem, first proved by Otto Toeplitz, is a result in series summability theory characterizing matrix summability methods that are regular. A regular matrix summability method is a linear sequence transformation that preserves the limits of convergent sequences.[1] The linear sequence transformation can be applied to the divergent sequences of partial sums of divergent series to give those series generalized sums.

(ai,j)i,j

with complex-valued entries defines a regular matrix summability method if and only if it satisfies all of the following properties:

\begin{align} &\limiai,j=0j\inN&&(Everycolumnsequenceconvergesto0.)\\[3pt] &\limi

infty
\sum
j=0

ai,j=1&&(Therowsumsconvergeto1.)\\[3pt] &\supi

infty
\sum
j=0

\vertai,j\vert<infty&&(Theabsoluterowsumsarebounded.) \end{align}

An example is Cesàro summation, a matrix summability method with

amn=\begin{cases}

1
m

&n\lem\ 0&n>m\end{cases}=\begin{pmatrix} 1&0&0&0&0&\\

1
2

&

1
2

&0&0&0&\\

1
3

&

1
3

&

1
3

&0&0&\\

1
4

&

1
4

&

1
4

&

1
4

&0&\\

1
5

&

1
5

&

1
5

&

1
5

&

1
5

&\\ \vdots&\vdots&\vdots&\vdots&\vdots&\ddots\\ \end{pmatrix}.

Formal statement

Let the aforementioned inifinite matrix

(ai,j)i,j

of complex elements satisfy the following conditions:

\limiai,j=0

for every fixed

j\inN

.

\supi

infty
\sum
j=0

\vertai,j\vert<infty

;

and

zn

be a sequence of complex numbers that converges to

\limnzn=zinfty

. We denote

Sn

as the weighted sum sequence:

Sn=

n
\sum
m=1

{\left(an,zn\right)}

.

Then the following results hold:

  1. If

\limnzn=zinfty=0

, then

\limn{Sn

} = 0 .
  1. If

\limnzn=zinfty\ne0

and

\limi

infty
\sum
j=0

ai,j=1

, then

\limn{Sn

} = z_ .[2]

Proof

Proving 1.

For the fixed

j\inN

the complex sequences

zn

,

Sn

and

ai,

approach zero if and only if the real-values sequences

\left|zn\right|

,

\left|Sn\right|

and

\left|ai,\right|

approach zero respectively. We also introduce

M=\supi

infty
\sum
j=0

\vertai,j\vert>0

.

Since

\left|zn\right|\to0

, for prematurely chosen

\varepsilon>0

there exists

Nz=Nz\left(\varepsilon\right)

, so for every

n>Nz\left(\varepsilon\right)

we have

\left|zn\right|<

\varepsilon
2M

. Next, for some

Na=Na\left(\varepsilon\right)>N\varepsilon\left(\varepsilon\right)

it's true, that

\left|an,\right|<

M
N\varepsilon

for every

n>Na\left(\varepsilon\right)

and

1\leqslantm\leqslantn

. Therefore, for every

n>Na\left(\varepsilon\right)

\begin{align} &\left|Sn\right|=\left|

n
\sum
m=1

\left(an,zn\right)\right|\leqslant

n
\sum
m=1

\left(\left|an,\right|\left|zn\right|\right) =

N\varepsilon
\sum
m=1

\left(\left|an,\right|\left|zn\right|\right)+

n
\sum
m=N\varepsilon

\left(\left|an,\right|\left|zn\right|\right)<\ &<N\varepsilon

M
N\varepsilon

\varepsilon
2M

+

\varepsilon
2M
n
\sum
m=N\varepsilon

\left|an,\right| \leqslant

\varepsilon
2

+

\varepsilon
2M
n
\sum
m=1

\left|an,\right|\leqslant

\varepsilon
2

+

\varepsilon
2M

M=\varepsilon \end{align}

which means, that both sequences

\left|Sn\right|

and

Sn

converge zero.[3]

Proving 2.

\limn\left(zn-zinfty\right)=0

. Applying the already proven statement yields

\limn

n
\sum
m=1

(an,m\left(zn-zinfty\right))=0

. Finally,

\limnSn=\limn

n
\sum
m=1

(an,mzn) =\limn

n
\sum
m=1

(an,m\left(zn-zinfty\right))+zinfty\limn

n
\sum
m=1

(an,m) =0+zinfty1=zinfty

, which completes the proof.

References

Further reading

Notes and References

  1. https://archive.org/details/silvermantoeplit00rude Silverman–Toeplitz theorem
  2. Linero . Antonio . Rosalsky . Andrew . 2013-07-01 . On the Toeplitz Lemma, Convergence in Probability, and Mean Convergence . live . Stochastic Analysis and Applications . en . 31 . 4 . 1 . 10.1080/07362994.2013.799406 . 0736-2994 . 2024-11-17.
  3. Book: Ljashko, Ivan Ivanovich . Математический анализ: введение в анализ, производная, интеграл. Справочное пособие по высшей математике. . Bojarchuk . Alexey Klimetjevich . Gaj . Jakov Gavrilovich . Golovach . Grigory Petrovich . 2001 . Editorial URSS . 978-5-354-00018-0 . 1st . 1 . Moskva . 58 . ru . Mathematical analysis: the introduction into analysis, derivatives, integrals. The handbook to mathematical analysis. .