In mathematics, the Silverman–Toeplitz theorem, first proved by Otto Toeplitz, is a result in series summability theory characterizing matrix summability methods that are regular. A regular matrix summability method is a linear sequence transformation that preserves the limits of convergent sequences.[1] The linear sequence transformation can be applied to the divergent sequences of partial sums of divergent series to give those series generalized sums.
(ai,j)i,j
\begin{align} &\limiai,j=0 j\inN&&(Everycolumnsequenceconvergesto0.)\\[3pt] &\limi
infty | |
\sum | |
j=0 |
ai,j=1&&(Therowsumsconvergeto1.)\\[3pt] &\supi
infty | |
\sum | |
j=0 |
\vertai,j\vert<infty&&(Theabsoluterowsumsarebounded.) \end{align}
An example is Cesàro summation, a matrix summability method with
amn=\begin{cases}
1 | |
m |
&n\lem\ 0&n>m\end{cases}=\begin{pmatrix} 1&0&0&0&0& … \\
1 | |
2 |
&
1 | |
2 |
&0&0&0& … \\
1 | |
3 |
&
1 | |
3 |
&
1 | |
3 |
&0&0& … \\
1 | |
4 |
&
1 | |
4 |
&
1 | |
4 |
&
1 | |
4 |
&0& … \\
1 | |
5 |
&
1 | |
5 |
&
1 | |
5 |
&
1 | |
5 |
&
1 | |
5 |
& … \\ \vdots&\vdots&\vdots&\vdots&\vdots&\ddots\\ \end{pmatrix}.
Let the aforementioned inifinite matrix
(ai,j)i,j
\limiai,j=0
j\inN
\supi
infty | |
\sum | |
j=0 |
\vertai,j\vert<infty
and
zn
\limnzn=zinfty
Sn
Sn=
n | |
\sum | |
m=1 |
{\left(an,zn\right)}
Then the following results hold:
\limnzn=zinfty=0
\limn{Sn
\limnzn=zinfty\ne0
\limi
infty | |
\sum | |
j=0 |
ai,j=1
\limn{Sn
For the fixed
j\inN
zn
Sn
ai,
\left|zn\right|
\left|Sn\right|
\left|ai,\right|
M=\supi
infty | |
\sum | |
j=0 |
\vertai,j\vert>0
Since
\left|zn\right|\to0
\varepsilon>0
Nz=Nz\left(\varepsilon\right)
n>Nz\left(\varepsilon\right)
\left|zn\right|<
\varepsilon | |
2M |
Na=Na\left(\varepsilon\right)>N\varepsilon\left(\varepsilon\right)
\left|an,\right|<
M | |
N\varepsilon |
n>Na\left(\varepsilon\right)
1\leqslantm\leqslantn
n>Na\left(\varepsilon\right)
\begin{align} &\left|Sn\right|=\left|
n | |
\sum | |
m=1 |
\left(an,zn\right)\right|\leqslant
n | |
\sum | |
m=1 |
\left(\left|an,\right| ⋅ \left|zn\right|\right) =
N\varepsilon | |
\sum | |
m=1 |
\left(\left|an,\right| ⋅ \left|zn\right|\right)+
n | |
\sum | |
m=N\varepsilon |
\left(\left|an,\right| ⋅ \left|zn\right|\right)<\ &<N\varepsilon ⋅
M | |
N\varepsilon |
⋅
\varepsilon | |
2M |
+
\varepsilon | |
2M |
n | |
\sum | |
m=N\varepsilon |
\left|an,\right| \leqslant
\varepsilon | |
2 |
+
\varepsilon | |
2M |
n | |
\sum | |
m=1 |
\left|an,\right|\leqslant
\varepsilon | |
2 |
+
\varepsilon | |
2M |
⋅ M=\varepsilon \end{align}
which means, that both sequences
\left|Sn\right|
Sn
\limn\left(zn-zinfty\right)=0
\limn
n | |
\sum | |
m=1 |
(an,m\left(zn-zinfty\right))=0
\limnSn=\limn
n | |
\sum | |
m=1 |
(an,mzn) =\limn
n | |
\sum | |
m=1 |
(an,m\left(zn-zinfty\right))+zinfty\limn
n | |
\sum | |
m=1 |
(an,m) =0+zinfty ⋅ 1=zinfty