SARM1 explained

Sterile alpha and TIR motif containing 1 Is an enzyme that in humans is encoded by the SARM1 gene. It is the most evolutionarily conserved member of the Toll/Interleukin receptor-1 (TIR) family.[1] [2] SARM1's TIR domain has intrinsic NADase enzymatic activity that is highly conserved from archaea, plants, nematode worms, fruit flies, and humans.[3] [4] [5] In mammals, SARM1 is highly expressed in neurons, where it resides in both cell bodies and axons, and can be associated with mitochondria.[6]

Function

While SARM1 has been studied as a Toll-like receptor adaptor protein in an immune context, its most well-studied function in mammals is as a sensor of metabolic stress and an executioner of neuronal cell body and axon death.[7] [8] [9] [10] [11] Because SARM1 is highly expressed in the nervous system, most studies of SARM1 focus on neuron degeneration, but some SARM1 can be found in other tissues, notably macrophages and T cells.[12] [13] By generating cADPR or NAADP, SARM1 may function as a Ca2+-signaling enzyme similar to CD38.[14] [15] [16] [17]

Regulation of enzymatic activity

SARM1's TIR domain is a multi-functional NAD(P)ase enzyme capable of hydrolyzing NAD+ or NADP, cyclizing NAD+ or NADP to form cADPR or cADPRP, and transglycosidation (base exchange) of NAD+ or NADP with free pyridines to form molecules such as NAADP.[18] [19] For NAD+, The transglycosidation (base exchange) activity of SARM1 extends beyond simple pyridines and includes many heterocyclic nucleophilic bases.[20]

SARM1's enzymatic activity can be regulated at the TIR domain orthosteric site by naturally occurring metabolites such as nicotinamide, NADP, and nicotinic acid riboside.[21] Non-endogenous small chemical molecules have also been shown to inhibit SARM1's enzymatic activity at or near the orthosteric site.[22] [23] [24] [25]

In addition, SARM1's enzymatic activity can be regulated by its allosteric site at the ARM domain, which can bind to NMN or NAD+. The ratio of NMN/NAD+ in cells determines SARM1's enzymatic activity.[26] [27] [28] A chemically-modified cell permeable version of NMN, CZ-48, likely activates SARM1 via interacting with this allosteric region. Two long-studied neurotoxins, Vacor and 3-acetylpyridine, cause neurodegeneration by activating SARM1. Both Vacor and 3-acetylpyridine can be modified by NAMPT to become their mononucleotide versions (Vacor-MN or 3-AP-MN) that bind to SARM1's allosteric ARM domain region and activate its TIR domain NADase activity.[29] [30] When NAD+ levels are low, nicotinic acid mononucleotide (NaMN) can bind to the allosteric region and inhibit SARM1 activity,[31] thus explaining the potent axon protection provided by treating neurons with the NaMN precursor nicotinic acid riboside (NaR) while inhibiting NAMPT.[32] Chemical screening approaches have also identified covalent inhibitors of SARM1's allosteric ARM domain region.[33] [34]

Other pro-degeneration signaling pathways, such as the MAP kinase pathway, have been linked to SARM1 activation. MAPK signaling has been shown to promote the loss of NMNAT2, thereby promoting SARM1 activation.[35] [36] [37] SARM1 activation also triggers the MAP kinase cascade, indicating some form of feedback loop may exist.[38]

Relevance to human disease

Possible implications of the SARM1 pathway with regard to human health may be found in animal models of neurodegeneration, where loss of SARM1 is neuroprotective in models of traumatic brain injury,[39] [40] [41] [42] [43] [44] [45] chemotherapy-induced neuropathy,[46] [47] [48] [23] [49] [50] diabetic neuropathy,[51] degenerative eye conditions,[52] [53] [54] [55] [56] [57] [58] drug-induced Schwann cell death,[59] Charcot-Marie-Tooth disease,[60] and hereditary spastic paraplegia.[61]

Loss-of-function alleles of the SARM1 gene also occur naturally in the human population, potentially altering susceptibility to various neurological conditions.[62]

Specific mutations in the human NMNAT2 gene, encoding a key regulator of SARM1 activity, have linked the Wallerian degeneration mechanism to two human neurological diseases - fetal akinesia deformation sequence[63] and childhood-onset polyneuropathy with erythromelalgia.[64] Mutations in the human SARM1 gene that result in SARM1 protein with constitutive NADase activity have been reported in patients with amyotrophic lateral sclerosis (ALS).[65] [66]

Wallerian degeneration pathway

See main article: Wallerian degeneration. SARM1 protein plays a central role in the Wallerian degeneration pathway. The role for this gene in the Wallerian degeneration pathway was first identified in a Drosophila melanogaster mutagenesis screen,[7] and subsequently genetic knockout of its homologue in mice showed robust protection of transected axons comparable to that of WldS mutation (a mouse mutation resulting in delayed Wallerian degeneration).[7] Loss of SARM1 in human iPSC-derived neurons is also axon protective.[67]

The SARM1 protein has a mitochondrial localization signal, an auto-inhibitory N-terminus region consisting of armadillo (ARM)/HEAT motifs, two sterile alpha motif domains (SAM) responsible for multimerization, and a C-terminal Toll/Interleukin-1 receptor (TIR) domain that possesses enzymatic activity. The functional unit of SARM1 is an octameric ring.[68] In healthy neurons, SARM1's enzyme activity is mostly autoinhibited through intramolecular and intermolecular interactions between ARM-ARM, ARM-SAM and ARM-TIR domains, as well as interactions between a duplex of octameric rings.[69] [70] [71]

SARM1's enzymatic activity is critically tuned to the activity of another axonal enzyme, NMNAT2. NMNAT2 is a labile protein in axons and is rapidly degraded after axon injury.[72] NMNAT2 is a transferase that uses ATP to convert nicotinamide mononucleotide (NMN) into NAD+. Remarkably, genetic loss of NMNAT2 in mice leads to embryonic lethality that can be fully rescued by genetic loss of SARM1, indicating that SARM1 acts downstream of NMNAT2.[73] Thus, when NMNAT2 is degraded after axon injury, SARM1 is activated. Conversely, overexpression of the WldS protein (which contains functional NMNAT1), axon-targeted NMNAT1, or NMNAT2 itself can protect axons and keep SARM1 from being activated.[74] [75] [76] [77] [78] [79] [80] [81] [82] These findings lead to the hypothesis and subsequent demonstration that NMNAT2's substrate NMN, which should increase when NMNAT2 is degraded after injury, can promote axon degeneration via SARM1.[83] [84] Further studies revealed that NMN could activate SARM1's enzymatic activity. Through a combination of structural, biochemical, biophysical, and cellular assays, it was revealed that SARM1 is tuned to NMNAT activity by sensing the ratio of NMN/NAD+.[9] This ratio is sensed by an allosteric region in SARM1's ARM domain region that can bind either NMN or NAD+. NAD+ binding is associated with SARM1's auto-inhibited state, while NMN binding to the allosteric region results in a conformational change in the ARM domain that allows for multimerization of SARM1's TIR domains and enzymatic activation.

SARM1 activation locally triggers a rapid collapse of NAD+ levels in the distal section of the injured axon, which then undergoes degeneration.[85] This collapse in NAD+ levels was later shown to be due to SARM1's TIR domain having intrinsic NAD+ cleavage activity. SARM1 can hydrolyze NAD+ into nicotinamide and adenosine diphosphate ribose (ADPR), generate cyclic ADPR (cADPR), or mediate a base-exchange reaction with ADPR and free pyridine-ring containing bases, like nicotinamide.[86] Activation of SARM1's NADase activity is necessary and sufficient to collapse NAD+ levels and initiate the Wallerian degeneration pathway. NAD+ loss is followed by depletion of ATP, defects in mitochondrial movement and depolarization, calcium influx, externalization of phosphatidylserine, and loss of membrane permeability prior to catastrophic axonal self-destruction.[87]

SARM1 activation due to loss of NMNAT2 in neurons also elicits a pro-degenerative neuroinflammatory response from peripheral nervous system macrophages and central nervous system astrocytes and microglia.[88] [89]

External links

Notes and References

  1. Carty M, Bowie AG . SARM: From immune regulator to cell executioner . Biochemical Pharmacology . 161 . 52–62 . March 2019 . 30633870 . 10.1016/j.bcp.2019.01.005 . 58613555 . 2262/108422 . free .
  2. Essuman K, Summers DW, Sasaki Y, Mao X, DiAntonio A, Milbrandt J . The SARM1 Toll/Interleukin-1 Receptor Domain Possesses Intrinsic NAD+ Cleavage Activity that Promotes Pathological Axonal Degeneration . Neuron . 93 . 6 . 1334–1343.e5 . March 2017 . 28334607 . 6284238 . 10.1016/j.neuron.2017.02.022 .
  3. Essuman K, Summers DW, Sasaki Y, Mao X, Yim AK, DiAntonio A, Milbrandt J . TIR Domain Proteins Are an Ancient Family of NAD+-Consuming Enzymes . Current Biology . 28 . 3 . 421–430.e4 . February 2018 . 29395922 . 5802418 . 10.1016/j.cub.2017.12.024 . 2018CBio...28E.421E .
  4. Wan L, Essuman K, Anderson RG, Sasaki Y, Monteiro F, Chung EH, Osborne Nishimura E, DiAntonio A, Milbrandt J, Dangl JL, Nishimura MT . TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death . Science . 365 . 6455 . 799–803 . August 2019 . 31439793 . 7045805 . 10.1126/science.aax1771 . 2019Sci...365..799W .
  5. Zhang Q, Zmasek CM, Cai X, Godzik A . TIR domain-containing adaptor SARM is a late addition to the ongoing microbe-host dialog . Developmental and Comparative Immunology . 35 . 4 . 461–468 . April 2011 . 21110998 . 3085110 . 10.1016/j.dci.2010.11.013 .
  6. Gerdts J, Summers DW, Milbrandt J, DiAntonio A . Axon Self-Destruction: New Links among SARM1, MAPKs, and NAD+ Metabolism . Neuron . 89 . 3 . 449–460 . February 2016 . 26844829 . 4742785 . 10.1016/j.neuron.2015.12.023 .
  7. Osterloh JM, Yang J, Rooney TM, Fox AN, Adalbert R, Powell EH, Sheehan AE, Avery MA, Hackett R, Logan MA, MacDonald JM, Ziegenfuss JS, Milde S, Hou YJ, Nathan C, Ding A, Brown RH, Conforti L, Coleman M, Tessier-Lavigne M, Züchner S, Freeman MR . dSarm/Sarm1 is required for activation of an injury-induced axon death pathway . Science . 337 . 6093 . 481–484 . July 2012 . 22678360 . 5225956 . 10.1126/science.1223899 . 2012Sci...337..481O .
  8. Gerdts J, Summers DW, Sasaki Y, DiAntonio A, Milbrandt J . Sarm1-mediated axon degeneration requires both SAM and TIR interactions . The Journal of Neuroscience . 33 . 33 . 13569–13580 . August 2013 . 23946415 . 3742939 . 10.1523/JNEUROSCI.1197-13.2013 .
  9. Figley MD, Gu W, Nanson JD, Shi Y, Sasaki Y, Cunnea K, Malde AK, Jia X, Luo Z, Saikot FK, Mosaiab T, Masic V, Holt S, Hartley-Tassell L, McGuinness HY, Manik MK, Bosanac T, Landsberg MJ, Kerry PS, Mobli M, Hughes RO, Milbrandt J, Kobe B, DiAntonio A, Ve T . SARM1 is a metabolic sensor activated by an increased NMN/NAD+ ratio to trigger axon degeneration . Neuron . 109 . 7 . 1118–1136.e11 . April 2021 . 33657413 . 8174188 . 10.1016/j.neuron.2021.02.009 .
  10. Jiang Y, Liu T, Lee CH, Chang Q, Yang J, Zhang Z . The NAD+-mediated self-inhibition mechanism of pro-neurodegenerative SARM1 . Nature . 588 . 7839 . 658–663 . December 2020 . 33053563 . 10.1038/s41586-020-2862-z . 222420804 . 2020Natur.588..658J .
  11. Sporny M, Guez-Haddad J, Khazma T, Yaron A, Dessau M, Shkolnisky Y, Mim C, Isupov MN, Zalk R, Hons M, Opatowsky Y . Structural basis for SARM1 inhibition and activation under energetic stress . eLife . 9 . November 2020 . 33185189 . 7688312 . 10.7554/eLife.62021 . free .
  12. Covarrubias AJ, Perrone R, Grozio A, Verdin E . NAD+ metabolism and its roles in cellular processes during ageing . Nature Reviews. Molecular Cell Biology . 22 . 2 . 119–141 . February 2021 . 33353981 . 7963035 . 10.1038/s41580-020-00313-x .
  13. Doran CG, Sugisawa R, Carty M, Roche F, Fergus C, Hokamp K, Kelly VP, Bowie AG . CRISPR/Cas9-mediated SARM1 knockout and epitope-tagged mice reveal that SARM1 does not regulate nuclear transcription, but is expressed in macrophages . The Journal of Biological Chemistry . 297 . 6 . 101417 . December 2021 . 34793837 . 8661062 . 10.1016/j.jbc.2021.101417 . free .
  14. Lee HC, Zhao YJ . Resolving the topological enigma in Ca2+ signaling by cyclic ADP-ribose and NAADP . The Journal of Biological Chemistry . 294 . 52 . 19831–19843 . December 2019 . 31672920 . 6937575 . 10.1074/jbc.REV119.009635 . free .
  15. Sasaki Y, Engber TM, Hughes RO, Figley MD, Wu T, Bosanac T, Devraj R, Milbrandt J, Krauss R, DiAntonio A . cADPR is a gene dosage-sensitive biomarker of SARM1 activity in healthy, compromised, and degenerating axons . Experimental Neurology . 329 . 113252 . July 2020 . 32087251 . 7302925 . 10.1016/j.expneurol.2020.113252 .
  16. Angeletti C, Amici A, Gilley J, Loreto A, Trapanotto AG, Antoniou C, Merlini E, Coleman MP, Orsomando G . SARM1 is a multi-functional NAD(P)ase with prominent base exchange activity, all regulated bymultiple physiologically relevant NAD metabolites . English . iScience . 25 . 2 . 103812 . February 2022 . 35198877 . 8844822 . 10.1016/j.isci.2022.103812 . 2022iSci...25j3812A .
  17. Li Y, Pazyra-Murphy MF, Avizonis D, de Sá Tavares Russo M, Tang S, Chen CY, Hsueh YP, Bergholz JS, Jiang T, Zhao JJ, Zhu J, Ko KW, Milbrandt J, DiAntonio A, Segal RA . Sarm1 activation produces cADPR to increase intra-axonal Ca++ and promote axon degeneration in PIPN . The Journal of Cell Biology . 221 . 2 . e202106080 . February 2022 . 34935867 . 8704956 . 10.1083/jcb.202106080 .
  18. Horsefield S, Burdett H, Zhang X, Manik MK, Shi Y, Chen J, Qi T, Gilley J, Lai JS, Rank MX, Casey LW, Gu W, Ericsson DJ, Foley G, Hughes RO, Bosanac T, von Itzstein M, Rathjen JP, Nanson JD, Boden M, Dry IB, Williams SJ, Staskawicz BJ, Coleman MP, Ve T, Dodds PN, Kobe B . NAD+ cleavage activity by animal and plant TIR domains in cell death pathways . Science . 365 . 6455 . 793–799 . August 2019 . 31439792 . 10.1126/science.aax1911 . 2019Sci...365..793H . 10072/393098 . 201616651 . free .
  19. Loring HS, Icso JD, Nemmara VV, Thompson PR . Initial Kinetic Characterization of Sterile Alpha and Toll/Interleukin Receptor Motif-Containing Protein 1 . Biochemistry . 59 . 8 . 933–942 . March 2020 . 32049506 . 7085114 . 10.1021/acs.biochem.9b01078 .
  20. Shi Y, Kerry PS, Nanson JD, Bosanac T, Sasaki Y, Krauss R, Saikot FK, Adams SE, Mosaiab T, Masic V, Mao X, Rose F, Vasquez E, Furrer M, Cunnea K, Brearley A, Gu W, Luo Z, Brillault L, Landsberg MJ, DiAntonio A, Kobe B, Milbrandt J, Hughes RO, Ve T . Structural basis of SARM1 activation, substrate recognition, and inhibition by small molecules . Molecular Cell . 82 . 9 . 1643–1659.e10 . May 2022 . 35334231 . 10.1016/j.molcel.2022.03.007 . 9188649 .
  21. Zhao YJ, He WM, Zhao ZY, Li WH, Wang QW, Hou YN, Tan Y, Zhang D . Acidic pH irreversibly activates the signaling enzyme SARM1 . The FEBS Journal . 288 . 23 . 6783–6794 . December 2021 . 34213829 . 10.1111/febs.16104 . 235707670 . free .
  22. Hughes RO, Bosanac T, Mao X, Engber TM, DiAntonio A, Milbrandt J, Devraj R, Krauss R . Small Molecule SARM1 Inhibitors Recapitulate the SARM1-/- Phenotype and Allow Recovery of a Metastable Pool of Axons Fated to Degenerate . Cell Reports . 34 . 1 . 108588 . January 2021 . 33406435 . 8179325 . 10.1016/j.celrep.2020.108588 .
  23. Bosanac T, Hughes RO, Engber T, Devraj R, Brearley A, Danker K, Young K, Kopatz J, Hermann M, Berthemy A, Boyce S, Bentley J, Krauss R . Pharmacological SARM1 inhibition protects axon structure and function in paclitaxel-induced peripheral neuropathy . Brain . 144 . 10 . 3226–3238 . November 2021 . 33964142 . 8634121 . 10.1093/brain/awab184 . free .
  24. Loring HS, Parelkar SS, Mondal S, Thompson PR . Identification of the first noncompetitive SARM1 inhibitors . Bioorganic & Medicinal Chemistry . 28 . 18 . 115644 . September 2020 . 32828421 . 7443514 . 10.1016/j.bmc.2020.115644 .
  25. Bratkowski M, Burdett TC, Danao J, Wang X, Mathur P, Gu W, Beckstead JA, Talreja S, Yang YS, Danko G, Park JH, Walton M, Brown SP, Tegley CM, Joseph PR, Reynolds CH, Sambashivan S . Uncompetitive, adduct-forming SARM1 inhibitors are neuroprotective in preclinical models of nerve injury and disease . Neuron . S0896–6273(22)00749–8 . September 2022 . 110 . 22 . 36087583 . 10.1016/j.neuron.2022.08.017 . 252167671 . free .
  26. Alexandris AS, Ryu J, Rajbhandari L, Harlan R, McKenney J, Wang Y, Aja S, Graham D, Venkatesan A, Koliatsos VE . Protective effects of NAMPT or MAPK inhibitors and NaR on Wallerian degeneration of mammalian axons . Neurobiology of Disease . 171 . 105808 . September 2022 . 35779777 . 10.1016/j.nbd.2022.105808 . 10621467 . 250122204 . free .
  27. Llobet Rosell A, Paglione M, Gilley J, Kocia M, Perillo G, Gasparrini M, Cialabrini L, Raffaelli N, Angeletti C, Orsomando G, Wu PH, Coleman MP, Loreto A, Neukomm LJ . The NAD+ precursor NMN activates dSarm to trigger axon degeneration in Drosophila . eLife . 11 . e80245 . December 2022 . 36476387 . 9788811 . 10.7554/eLife.80245 . free .
  28. Hou YN, Cai Y, Li WH, He WM, Zhao ZY, Zhu WJ, Wang Q, Mai X, Liu J, Lee HC, Stjepanovic G, Zhang H, Zhao YJ . A conformation-specific nanobody targeting the nicotinamide mononucleotide-activated state of SARM1 . Nature Communications . 13 . 1 . 7898 . December 2022 . 36550129 . 9780360 . 10.1038/s41467-022-35581-y . 2022NatCo..13.7898H .
  29. Loreto A, Angeletti C, Gu W, Osborne A, Nieuwenhuis B, Gilley J, Merlini E, Arthur-Farraj P, Amici A, Luo Z, Hartley-Tassell L, Ve T, Desrochers LM, Wang Q, Kobe B, Orsomando G, Coleman MP . Neurotoxin-mediated potent activation of the axon degeneration regulator SARM1 . eLife . 10 . e72823 . December 2021 . 34870595 . 8758145 . 10.7554/eLife.72823 . free .
  30. Wu T, Zhu J, Strickland A, Ko KW, Sasaki Y, Dingwall CB, Yamada Y, Figley MD, Mao X, Neiner A, Bloom AJ, DiAntonio A, Milbrandt J . Neurotoxins subvert the allosteric activation mechanism of SARM1 to induce neuronal loss . Cell Reports . 37 . 3 . 109872 . October 2021 . 34686345 . 8638332 . 10.1016/j.celrep.2021.109872 .
  31. Sasaki Y, Zhu J, Shi Y, Gu W, Kobe B, Ve T, DiAntonio A, Milbrandt J . Nicotinic acid mononucleotide is an allosteric SARM1 inhibitor promoting axonal protection . Experimental Neurology . 345 . 113842 . November 2021 . 34403688 . 8571713 . 10.1016/j.expneurol.2021.113842 . 237012029 .
  32. Liu HW, Smith CB, Schmidt MS, Cambronne XA, Cohen MS, Migaud ME, Brenner C, Goodman RH . Pharmacological bypass of NAD+ salvage pathway protects neurons from chemotherapy-induced degeneration . Proceedings of the National Academy of Sciences of the United States of America . 115 . 42 . 10654–10659 . October 2018 . 30257945 . 6196523 . 10.1073/pnas.1809392115 . free . 2018PNAS..11510654L .
  33. Li WH, Huang K, Cai Y, Wang QW, Zhu WJ, Hou YN, Wang S, Cao S, Zhao ZY, Xie XJ, Du Y, Lee CS, Lee HC, Zhang H, Zhao YJ . Permeant fluorescent probes visualize the activation of SARM1 and uncover an anti-neurodegenerative drug candidate . eLife . 10 . May 2021 . 33944777 . 8143800 . 10.7554/eLife.67381 . free .
  34. Feldman HC, Merlini E, Guijas C, DeMeester KE, Njomen E, Kozina EM, Yokoyama M, Vinogradova E, Reardon HT, Melillo B, Schreiber SL, Loreto A, Blankman JL, Cravatt BF . Selective inhibitors of SARM1 targeting an allosteric cysteine in the autoregulatory ARM domain . Proceedings of the National Academy of Sciences of the United States of America . 119 . 35 . e2208457119 . August 2022 . 35994671 . 9436332 . 10.1073/pnas.2208457119 . free . 2022PNAS..11908457F .
  35. Walker LJ, Summers DW, Sasaki Y, Brace EJ, Milbrandt J, DiAntonio A . MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2 . eLife . 6 . January 2017 . 28095293 . 5241118 . 10.7554/eLife.22540 . free .
  36. Summers DW, Milbrandt J, DiAntonio A . Palmitoylation enables MAPK-dependent proteostasis of axon survival factors . Proceedings of the National Academy of Sciences of the United States of America . 115 . 37 . E8746–E8754 . September 2018 . 30150401 . 6140512 . 10.1073/pnas.1806933115 . 2018PNAS..115E8746S . free .
  37. Summers DW, Frey E, Walker LJ, Milbrandt J, DiAntonio A . DLK Activation Synergizes with Mitochondrial Dysfunction to Downregulate Axon Survival Factors and Promote SARM1-Dependent Axon Degeneration . Molecular Neurobiology . 57 . 2 . 1146–1158 . February 2020 . 31696428 . 7035184 . 10.1007/s12035-019-01796-2 .
  38. Yang J, Wu Z, Renier N, Simon DJ, Uryu K, Park DS, Greer PA, Tournier C, Davis RJ, Tessier-Lavigne M . Pathological axonal death through a MAPK cascade that triggers a local energy deficit . Cell . 160 . 1–2 . 161–176 . January 2015 . 25594179 . 4306654 . 10.1016/j.cell.2014.11.053 .
  39. Henninger N, Bouley J, Sikoglu EM, An J, Moore CM, King JA, Bowser R, Freeman MR, Brown RH . Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1 . Brain . 139 . Pt 4 . 1094–1105 . April 2016 . 26912636 . 5006226 . 10.1093/brain/aww001 .
  40. Ziogas NK, Koliatsos VE . Primary Traumatic Axonopathy in Mice Subjected to Impact Acceleration: A Reappraisal of Pathology and Mechanisms with High-Resolution Anatomical Methods . The Journal of Neuroscience . 38 . 16 . 4031–4047 . April 2018 . 29567804 . 6705930 . 10.1523/JNEUROSCI.2343-17.2018 .
  41. Marion CM, McDaniel DP, Armstrong RC . Sarm1 deletion reduces axon damage, demyelination, and white matter atrophy after experimental traumatic brain injury . Experimental Neurology . 321 . 113040 . November 2019 . 31445042 . 10.1016/j.expneurol.2019.113040 . 201124859 . free .
  42. Maynard ME, Redell JB, Zhao J, Hood KN, Vita SM, Kobori N, Dash PK . Sarm1 loss reduces axonal damage and improves cognitive outcome after repetitive mild closed head injury . Experimental Neurology . 327 . 113207 . May 2020 . 31962129 . 7959192 . 10.1016/j.expneurol.2020.113207 .
  43. Bradshaw DV, Knutsen AK, Korotcov A, Sullivan GM, Radomski KL, Dardzinski BJ, Zi X, McDaniel DP, Armstrong RC . Genetic inactivation of SARM1 axon degeneration pathway improves outcome trajectory after experimental traumatic brain injury based on pathological, radiological, and functional measures . Acta Neuropathologica Communications . 9 . 1 . 89 . May 2021 . 34001261 . 8130449 . 10.1186/s40478-021-01193-8 . free .
  44. Alexandris AS, Lee Y, Lehar M, Alam Z, Samineni P, Tripathi SJ, Ryu J, Koliatsos VE . Traumatic axonopathy in spinal tracts after impact acceleration head injury: Ultrastructural observations and evidence of SARM1-dependent axonal degeneration . Experimental Neurology . 114252 . October 2022 . 359 . 36244414 . 10.1016/j.expneurol.2022.114252 . 252894815 . 10321775 .
  45. Alexandris . Athanasios S. . Lee . Youngrim . Lehar . Mohamed . Alam . Zahra . McKenney . James . Perdomo . Dianela . Ryu . Jiwon . Welsbie . Derek . Zack . Donald J. . Koliatsos . Vassilis E. . 2023-03-14 . Traumatic Axonal Injury in the Optic Nerve: The Selective Role of SARM1 in the Evolution of Distal Axonopathy . Journal of Neurotrauma . 40 . 15–16 . 1743–1761 . 10.1089/neu.2022.0416 . 1557-9042 . 36680758. 10460965 . 256055839 . free .
  46. Geisler S, Doan RA, Strickland A, Huang X, Milbrandt J, DiAntonio A . Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice . Brain . 139 . Pt 12 . 3092–3108 . December 2016 . 27797810 . 5840884 . 10.1093/brain/aww251 .
  47. Geisler S, Doan RA, Cheng GC, Cetinkaya-Fisgin A, Huang SX, Höke A, Milbrandt J, DiAntonio A . Vincristine and bortezomib use distinct upstream mechanisms to activate a common SARM1-dependent axon degeneration program . JCI Insight . 4 . 17 . September 2019 . 31484833 . 6777905 . 10.1172/jci.insight.129920 .
  48. Gould SA, White M, Wilbrey AL, Pór E, Coleman MP, Adalbert R . Protection against oxaliplatin-induced mechanical and thermal hypersensitivity in Sarm1-/- mice . Experimental Neurology . 338 . 113607 . April 2021 . 33460644 . 10.1016/j.expneurol.2021.113607 . 231614379 .
  49. Cetinkaya-Fisgin A, Luan X, Reed N, Jeong YE, Oh BC, Hoke A . Cisplatin induced neurotoxicity is mediated by Sarm1 and calpain activation . Scientific Reports . 10 . 1 . 21889 . December 2020 . 33318563 . 7736304 . 10.1038/s41598-020-78896-w . 2020NatSR..1021889C .
  50. Turkiew E, Falconer D, Reed N, Höke A . Deletion of Sarm1 gene is neuroprotective in two models of peripheral neuropathy . Journal of the Peripheral Nervous System . 22 . 3 . 162–171 . September 2017 . 28485482 . 5585053 . 10.1111/jns.12219 .
  51. Cheng Y, Liu J, Luan Y, Liu Z, Lai H, Zhong W, Yang Y, Yu H, Feng N, Wang H, Huang R, He Z, Yan M, Zhang F, Sun YG, Ying H, Guo F, Zhai Q . Sarm1 Gene Deficiency Attenuates Diabetic Peripheral Neuropathy in Mice . Diabetes . 68 . 11 . 2120–2130 . November 2019 . 31439642 . 6804630 . 10.2337/db18-1233 .
  52. Fernandes KA, Mitchell KL, Patel A, Marola OJ, Shrager P, Zack DJ, Libby RT, Welsbie DS . Role of SARM1 and DR6 in retinal ganglion cell axonal and somal degeneration following axonal injury . Experimental Eye Research . 171 . 54–61 . June 2018 . 29526794 . 5964014 . 10.1016/j.exer.2018.03.007 .
  53. Ozaki E, Gibbons L, Neto NG, Kenna P, Carty M, Humphries M, Humphries P, Campbell M, Monaghan M, Bowie A, Doyle SL . SARM1 deficiency promotes rod and cone photoreceptor cell survival in a model of retinal degeneration . Life Science Alliance . 3 . 5 . e201900618 . May 2020 . 32312889 . 7184027 . 10.26508/lsa.201900618 .
  54. Ko KW, Milbrandt J, DiAntonio A . SARM1 acts downstream of neuroinflammatory and necroptotic signaling to induce axon degeneration . The Journal of Cell Biology . 219 . 8 . e201912047 . August 2020 . 32609299 . 7401797 . 10.1083/jcb.201912047 .
  55. Sasaki Y, Kakita H, Kubota S, Sene A, Lee TJ, Ban N, Dong Z, Lin JB, Boye SL, DiAntonio A, Boye SE, Apte RS, Milbrandt J . SARM1 depletion rescues NMNAT1-dependent photoreceptor cell death and retinal degeneration . eLife . 9 . e62027 . October 2020 . 33107823 . 7591247 . 10.7554/eLife.62027 . free .
  56. Finnegan LK, Chadderton N, Kenna PF, Palfi A, Carty M, Bowie AG, Millington-Ward S, Farrar GJ . SARM1 Ablation Is Protective and Preserves Spatial Vision in an In Vivo Mouse Model of Retinal Ganglion Cell Degeneration . International Journal of Molecular Sciences . 23 . 3 . 1606 . January 2022 . 35163535 . 8835928 . 10.3390/ijms23031606 . free .
  57. Gibbons L, Ozaki E, Greene C, Trappe A, Carty M, Coppinger JA, Bowie AG, Campbell M, Doyle SL . SARM1 Promotes Photoreceptor Degeneration in an Oxidative Stress Model of Retinal Degeneration . Frontiers in Neuroscience . 16 . 852114 . 2022 . 35431772 . 9012108 . 10.3389/fnins.2022.852114 . free .
  58. Liu . Pingting . Chen . Wei . Jiang . Haowen . Huang . Haoliang . Liu . Liping . Fang . Fang . Li . Liang . Feng . Xue . Liu . Dong . Dalal . Roopa . Sun . Yang . Jafar-Nejad . Paymaan . Ling . Karen . Rigo . Frank . Ye . Jiangbin . 2023-06-13 . Differential effects of SARM1 inhibition in traumatic glaucoma and EAE optic neuropathies . Molecular Therapy. Nucleic Acids . 32 . 13–27 . 10.1016/j.omtn.2023.02.029 . 2162-2531 . 10025007 . 36950280.
  59. Tian W, Czopka T, López-Schier H . Systemic loss of Sarm1 protects Schwann cells from chemotoxicity by delaying axon degeneration . Communications Biology . 3 . 1 . 49 . January 2020 . 32001778 . 6992705 . 10.1038/s42003-020-0776-9 .
  60. Yamada Y, Strickland A, Sasaki Y, Bloom AJ, DiAntonio A, Milbrandt J . A SARM1/mitochondrial feedback loop drives neuropathogenesis in a Charcot-Marie-Tooth disease type 2A rat model . The Journal of Clinical Investigation . e161566 . October 2022 . 132 . 23 . 36287202 . 10.1172/JCI161566 . 9711878 . 253118335 .
  61. Montoro-Gámez . Carolina . Nolte . Hendrik . Molinié . Thibaut . Evangelista . Giovanna . Tröder . Simon . Barth . Esther . Popovic . Milica . Trifunovic . Aleksandra . Zevnik . Branko . Langer . Thomas . Rugarli . Elena I. . 2023-04-22 . SARM1 deletion delays cerebellar but not spinal cord degeneration in an enhanced mouse model of SPG7 deficiency . Brain: A Journal of Neurology . 146 . 10 . 4117–4131 . 10.1093/brain/awad136 . 1460-2156 . 37086482.
  62. Ademi M, Yang X, Coleman MP, Gilley J . Natural variants of human SARM1 cause both intrinsic and dominant loss-of-function influencing axon survival . Scientific Reports . 12 . 1 . 13846 . August 2022 . 35974060 . 9381744 . 10.1038/s41598-022-18052-8 . 2022NatSR..1213846A .
  63. Lukacs M, Gilley J, Zhu Y, Orsomando G, Angeletti C, Liu J, Yang X, Park J, Hopkin RJ, Coleman MP, Zhai RG, Stottmann RW . Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence . Experimental Neurology . 320 . 112961 . October 2019 . 31136762 . 6708453 . 10.1016/j.expneurol.2019.112961 .
  64. Huppke P, Wegener E, Gilley J, Angeletti C, Kurth I, Drenth JP, Stadelmann C, Barrantes-Freer A, Brück W, Thiele H, Nürnberg P, Gärtner J, Orsomando G, Coleman MP . Homozygous NMNAT2 mutation in sisters with polyneuropathy and erythromelalgia . Experimental Neurology . 320 . 112958 . October 2019 . 31132363 . 10.1016/j.expneurol.2019.112958 . 162183820 .
  65. Gilley J, Jackson O, Pipis M, Estiar MA, Al-Chalabi A, Danzi MC, van Eijk KR, Goutman SA, Harms MB, Houlden H, Iacoangeli A, Kaye J, Lima L, Ravits J, Rouleau GA, Schüle R, Xu J, Züchner S, Cooper-Knock J, Gan-Or Z, Reilly MM, Coleman MP . Enrichment of SARM1 alleles encoding variants with constitutively hyperactive NADase in patients with ALS and other motor nerve disorders . eLife . 10 . e70905 . November 2021 . 34796871 . 8735862 . 10.7554/eLife.70905 . free .
  66. Bloom AJ, Mao X, Strickland A, Sasaki Y, Milbrandt J, DiAntonio A . Constitutively active SARM1 variants that induce neuropathy are enriched in ALS patients . Molecular Neurodegeneration . 17 . 1 . 1 . January 2022 . 34991663 . 8739729 . 10.1186/s13024-021-00511-x . free .
  67. Chen YH, Sasaki Y, DiAntonio A, Milbrandt J . SARM1 is required in human derived sensory neurons for injury-induced and neurotoxic axon degeneration . Experimental Neurology . 339 . 113636 . May 2021 . 33548217 . 8171232 . 10.1016/j.expneurol.2021.113636 .
  68. Sporny M, Guez-Haddad J, Lebendiker M, Ulisse V, Volf A, Mim C, Isupov MN, Opatowsky Y . Structural Evidence for an Octameric Ring Arrangement of SARM1 . Journal of Molecular Biology . 431 . 19 . 3591–3605 . September 2019 . 31278906 . 10.1016/j.jmb.2019.06.030 . 195819811 .
  69. Shen C, Vohra M, Zhang P, Mao X, Figley MD, Zhu J, Sasaki Y, Wu H, DiAntonio A, Milbrandt J . Multiple domain interfaces mediate SARM1 autoinhibition . Proceedings of the National Academy of Sciences of the United States of America . 118 . 4 . e2023151118 . January 2021 . 33468661 . 7848697 . 10.1073/pnas.2023151118 . 2021PNAS..11823151S . free .
  70. Bratkowski M, Xie T, Thayer DA, Lad S, Mathur P, Yang YS, Danko G, Burdett TC, Danao J, Cantor A, Kozak JA, Brown SP, Bai X, Sambashivan S . Structural and Mechanistic Regulation of the Pro-degenerative NAD Hydrolase SARM1 . Cell Reports . 32 . 5 . 107999 . August 2020 . 32755591 . 10.1016/j.celrep.2020.107999 . free .
  71. Khazma T, Golan-Vaishenker Y, Guez-Haddad J, Grossman A, Sain R, Weitman M, Plotnikov A, Zalk R, Hons M, Opatowsky Y . A duplex structure of SARM1 octamers stabilized by a new inhibitor . Cellular and Molecular Life Sciences . 80 . 1 . 16 . December 2022 . 36564647 . 10.1007/s00018-022-04641-3 . 255085095 . 11072711 .
  72. Gilley J, Coleman MP . Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons . PLOS Biology . 8 . 1 . e1000300 . January 2010 . 20126265 . 2811159 . 10.1371/journal.pbio.1000300 . free .
  73. Gilley J, Orsomando G, Nascimento-Ferreira I, Coleman MP . Absence of SARM1 rescues development and survival of NMNAT2-deficient axons . Cell Reports . 10 . 12 . 1974–1981 . March 2015 . 25818290 . 4386025 . 10.1016/j.celrep.2015.02.060 .
  74. Araki T, Sasaki Y, Milbrandt J . Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration . Science . 305 . 5686 . 1010–1013 . August 2004 . 15310905 . 10.1126/science.1098014 . 32370137 . 2004Sci...305.1010A .
  75. Sasaki Y, Vohra BP, Lund FE, Milbrandt J . Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide . The Journal of Neuroscience . 29 . 17 . 5525–5535 . April 2009 . 19403820 . 3162248 . 10.1523/JNEUROSCI.5469-08.2009 .
  76. Sasaki Y, Vohra BP, Baloh RH, Milbrandt J . Transgenic mice expressing the Nmnat1 protein manifest robust delay in axonal degeneration in vivo . The Journal of Neuroscience . 29 . 20 . 6526–6534 . May 2009 . 19458223 . 2697066 . 10.1523/JNEUROSCI.1429-09.2009 .
  77. Sasaki Y, Milbrandt J . Axonal degeneration is blocked by nicotinamide mononucleotide adenylyltransferase (Nmnat) protein transduction into transected axons . The Journal of Biological Chemistry . 285 . 53 . 41211–41215 . December 2010 . 21071441 . 3009846 . 10.1074/jbc.C110.193904 . free .
  78. Sasaki Y, Nakagawa T, Mao X, DiAntonio A, Milbrandt J . NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD+ depletion . eLife . 5 . October 2016 . 27735788 . 5063586 . 10.7554/eLife.19749 . free .
  79. Coleman MP, Conforti L, Buckmaster EA, Tarlton A, Ewing RM, Brown MC, Lyon MF, Perry VH . An 85-kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse . Proceedings of the National Academy of Sciences of the United States of America . 95 . 17 . 9985–9990 . August 1998 . 9707587 . 21448 . 10.1073/pnas.95.17.9985 . free . 1998PNAS...95.9985C .
  80. Beirowski B, Babetto E, Gilley J, Mazzola F, Conforti L, Janeckova L, Magni G, Ribchester RR, Coleman MP . Non-nuclear Wld(S) determines its neuroprotective efficacy for axons and synapses in vivo . The Journal of Neuroscience . 29 . 3 . 653–668 . January 2009 . 19158292 . 6665162 . 10.1523/JNEUROSCI.3814-08.2009 .
  81. Conforti L, Wilbrey A, Morreale G, Janeckova L, Beirowski B, Adalbert R, Mazzola F, Di Stefano M, Hartley R, Babetto E, Smith T, Gilley J, Billington RA, Genazzani AA, Ribchester RR, Magni G, Coleman M . Wld S protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice . The Journal of Cell Biology . 184 . 4 . 491–500 . February 2009 . 19237596 . 2654131 . 10.1083/jcb.200807175 .
  82. Babetto E, Beirowski B, Janeckova L, Brown R, Gilley J, Thomson D, Ribchester RR, Coleman MP . Targeting NMNAT1 to axons and synapses transforms its neuroprotective potency in vivo . The Journal of Neuroscience . 30 . 40 . 13291–13304 . October 2010 . 20926655 . 6634738 . 10.1523/JNEUROSCI.1189-10.2010 .
  83. Di Stefano M, Nascimento-Ferreira I, Orsomando G, Mori V, Gilley J, Brown R, Janeckova L, Vargas ME, Worrell LA, Loreto A, Tickle J, Patrick J, Webster JR, Marangoni M, Carpi FM, Pucciarelli S, Rossi F, Meng W, Sagasti A, Ribchester RR, Magni G, Coleman MP, Conforti L . A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration . Cell Death and Differentiation . 22 . 5 . 731–742 . May 2015 . 25323584 . 4392071 . 10.1038/cdd.2014.164 .
  84. Loreto A, Di Stefano M, Gering M, Conforti L . Wallerian Degeneration Is Executed by an NMN-SARM1-Dependent Late Ca(2+) Influx but Only Modestly Influenced by Mitochondria . Cell Reports . 13 . 11 . 2539–2552 . December 2015 . 26686637 . 10.1016/j.celrep.2015.11.032 . 25667592 . free .
  85. Gerdts J, Brace EJ, Sasaki Y, DiAntonio A, Milbrandt J . SARM1 activation triggers axon degeneration locally via NAD⁺ destruction . Science . 348 . 6233 . 453–457 . April 2015 . 25908823 . 4513950 . 10.1126/science.1258366 . 2015Sci...348..453G .
  86. Zhao ZY, Xie XJ, Li WH, Liu J, Chen Z, Zhang B, Li T, Li SL, Lu JG, Zhang L, Zhang LH, Xu Z, Lee HC, Zhao YJ . A Cell-Permeant Mimetic of NMN Activates SARM1 to Produce Cyclic ADP-Ribose and Induce Non-apoptotic Cell Death . iScience . 15 . 452–466 . May 2019 . 31128467 . 6531917 . 10.1016/j.isci.2019.05.001 . 2019iSci...15..452Z .
  87. Ko KW, Devault L, Sasaki Y, Milbrandt J, DiAntonio A . Live imaging reveals the cellular events downstream of SARM1 activation . eLife . 10 . e71148 . November 2021 . 34779400 . 8612704 . 10.7554/eLife.71148 . free .
  88. Dingwall CB, Strickland A, Yum SW, Yim AK, Zhu J, Wang PL, Yamada Y, Schmidt RE, Sasaki Y, Bloom AJ, DiAntonio A, Milbrandt J . Macrophage depletion blocks congenital SARM1-dependent neuropathy . The Journal of Clinical Investigation . e159800 . October 2022 . 132 . 23 . 36287209 . 10.1172/JCI159800 . 9711884 .
  89. Niou Z, Yang S, Sri A, Rodriquez H, Gilley J, Coleman MP, Lu H . 2022-02-08 . NMNAT2 in cortical glutamatergic neurons exerts both cell and non-cell autonomous influences to shape cortical development and to maintain neuronal health . bioRxiv . 2022.02.05.479195 . 10.1101/2022.02.05.479195. 246746270 .