Railways with a railway track gauge of first appeared in the United Kingdom and the United States. This gauge became commonly known as "Russian gauge", because the government of the Russian Empire chose it in 1843. Former areas and states of the Empire (such as Finland) have inherited this standard. However in 1970, Soviet Railways re-defined the gauge as 1,520 mm .
With about 225000km (140,000miles) of track, 1,520 mm is the second-most common gauge in the world, after .
In 1748, the Wylam waggonway was built to a gauge for the shipment of coal from Wylam to Lemington down the River Tyne.
In 1839, the Eastern Counties Railway was constructed. In 1840, the Northern and Eastern Railway was built. In 1844, both lines were converted to . In 1903, the East Hill Cliff Railway, a funicular, was opened.
See also: Track gauge in the United States and Confederate railroads in the American Civil War.
In 1827, Horatio Allen, the chief engineer of the South Carolina Canal and Rail Road Company, prescribed the usage of gauge. Many other railroads in the Southern United States adopted this gauge. The presence of several distinct gauges was a major disadvantage to the Confederate States of America during the American Civil War. In 1886, when around 11500miles of gauge track existed in the United States, almost all of the railroads using that gauge were converted to, the gauge then used by the Pennsylvania Railroad.
In 1837, the first railway built in Russia was a gauge, 17 km long experimental line connecting Saint Petersburg with Tsarskoye Selo and Pavlovsk. The choice of gauge was influenced by Brunel's Great Western Railway which used . The Tsarskoye Selo railway's success proved that a larger gauge could be viable for railways isolated from the extant gauge Western European network.
In 1840, work started on the second railway in the Russian Empire, the Warsaw–Vienna railway in Congress Poland. It was a standard gauge, with the express intention of allowing through-freight trains into Austria-Hungary.
The modern Russian railway network solidified around the Saint Petersburg–Moscow railway, built in 1842. There, the Tsar established a committee to recommend technical standards for the building of Russia's first major railway. The team included devotees of Franz Anton von Gerstner, who pushed to continue the Tsarskoye Selo gauge, and engineer Pavel Melnikov and his consultant George Washington Whistler, a prominent American railway engineer. Whistler recommended on the basis that it was cheaper to construct than and cheaper to maintain than . His advice won over the Tsar.
At the time, questions of continuity with the European network did not arise. By the time difficulties arose in connecting the Prussian railroads to the Russian ones in Warsaw in the 1850s, it was too late to change.
A persistent myth holds that Imperial Russia chose a gauge broader than standard gauge for military reasons, namely to prevent potential invaders from using the rail system. The Russian military recognized as early as 1841 that operations to disrupt railway track did not depend on the gauge, and should instead focus on destroying bridges and tunnels.[1] However, in both World Wars the break of gauge did pose some amount of obstacle to the invading Germans.
The 5-foot gauge became the standard in the Russian Empire and later the Soviet Union.
Russian engineers used it on the Chinese Eastern Railway, built in the closing years of the 19th century across the Northeastern China entry to provide a shortcut for the Trans-Siberian Railway to Vladivostok. The railway's southern branch, from Harbin via Changchun to Lüshun, used Russian gauge. As a result of the Russo-Japanese War of 1904-1905, its southernmost section from Changchun to Lüshun was lost to the Japanese, who promptly regauged it to standard gauge, after using the narrow for a short time during the war. This formed a break of gauge between Changchun and Kuancheng, the station just to the north of Changchun, still in Russian hands, until the rest of the former Chinese Eastern Railway was converted to standard gauge, probably in the 1930s.
Unlike in South Manchuria, the Soviet Union's reconquest of southern Sakhalin from Japan did not result in regauging of the railway system. Southern Sakhalin has continued with the original Japanese gauge simultaneously with the Russian gauge railway, constructed in the northern part of the island in 1930-1932 (Moskalvo-Okha). The railway has no fixed connection with the mainland. Before 2019, rail cars coming from the mainland port of Vanino on the Vanino-Kholmsk train ferry, operating since 1973, had to have their bogies changed in the Sakhalin port of Kholmsk. In 2004 and 2008 plans were put forward to convert it to the Russian gauge. The conversion was completed in 2019.
There were proposals in 2013 for north-south and east-west lines in Afghanistan, with construction to start in 2013.
The Panama Canal Railway, first constructed in ca. 1850, was built in gauge. During canal construction (1904 - 1914), this same gauge was chosen for both construction traffic, canal operating services along the quays, and the newly routed commercial cross-isthmus railway. In 2000 the gauge for the commercial parallel railway was changed to to use standard gauge equipment. The original gauge was chosen under the influence of the pre-conversion southern United States railway companies. The electric manoeuvering locomotives along the locks (mules) still use the gauge that was laid during canal construction.
See main article: History of rail transport in Finland.
The first rail line in Finland was opened in January 1862. As Finland was then the Grand Duchy of Finland, an autonomous state ruled in personal union by Imperial Russia where railways were also built to the (5 ft) broad track gauge of . However the railway systems were not connected until the bridge over the River Neva was built in 1913. Russian trains could not have run on Finnish tracks, because the Finnish loading gauge was narrower, until the connection was made and the Finnish structure gauge was widened.
In the late 1960s the gauge was redefined to in the Soviet Union. At the same time the tolerances were tightened. As the running gear (wheelsets) of the rolling stock remained unaltered, the result was an increased speed and stability. The conversion took place between 1970 and the beginning of the 1990s.
In Finland, the Finnish State Railways kept the original definition of, even though they also have tightened the tolerances in a similar way, but to a higher level.
After its independence from the Soviet Union in 1991, Estonia redefined its track gauge to, to match Finland's gauge. The redefinition did not mean that all the railways in Estonia were changed immediately. It was more a rule change, so that all renovated old tracks and new railways would be constructed in 1,524 mm gauge from then on. (See Track gauge in Estonia.)
Finland allows its gauge to be 1,520–1,529 mm on first class lines (classes 1AA and 1A, speed 220–160 km/h).
If the rolling stock's tolerance is kept within certain limits, through running between railways and Finnish railways is allowed. Since both 1,520 and 1,524 mm tolerances overlap, the difference is negligible. The international high-speed Allegro's gauge between Helsinki and St. Petersburg was specified as 1,522 mm.
The loading gauge, which defines the maximum height and width for railway vehicles and their loads, is larger for Russian gauge. This means that if a standard gauge railway, in Europe, is adapted for dual gauge, bridges must be rebuilt, double tracks must be placed further apart and the overhead wire must be raised. Or there must be restrictions on permitted rolling stock, which would restrict the benefit of such a railway. Dual gauge needs more width than single gauge. For double stacking on Russian gauge tracks, maximum height shall be above rails.
For standard gauge railways, double stacking maximum height shall be . For Indian gauge railways, double stacking maximum height shall be, and minimum overhead wiring height shall be above rails. Minimum overhead wiring height for double stacking, standard gauge railways shall be, and Indian gauge railways shall be above rails, respectively. This would apply to Russia and Europe (or North America), rather than to Russia and China (or Iran).
The primary countries currently using the gauge of 5 ft or 1,520 mm, include:[2]
Short sections of Russian or 5 ft gauge extend into Poland, eastern Slovakia, Sweden (at the Finnish border at Haparanda), and northern Afghanistan.
There is an approximately 150 km long section in Hungary in the Záhony logistics area close to the Ukrainian border.
Following renovations in 2014, a 32 km section of dual Standard/Russian gauge was installed between Tumangang and Rajin stations in North Korea.
The most western gauge railway is the Polish LHS (Linia Hutnicza Szerokotorowa) from the Ukrainian border to the eastern end of the Upper Silesian Industrial Region.
Although broad gauge is quite rare on lighter railways and street tramways worldwide, almost all tramways in the former USSR are broad gauge (according to terminology in use in these countries, gauges narrower than are considered to be narrow). Many tramway networks initially built to narrow gauges (or) were converted to broad gauge. As of 2015, only a few out of more than sixty tram systems in Russia are not broad gauge: in Kaliningrad and Pyatigorsk, in Rostov-on-Don. There are two tram systems in and around Yevpatoria that use gauge.
Finland's Helsinki trams and Latvia's Liepāja trams use . Estonia's Tallinn trams use similar . Warsaw's tramway system, constructed with 1525 mm gauge, was regauged to 1435 mm during post-WWII reconstruction. Tampere tramway, built in 2021, uses .
Underground urban rapid transit systems in the former USSR, like the Moscow Metro, Saint Petersburg Metro, Kyiv Metro and Yerevan Metro use Russian gauge . Outside the former USSR, the Helsinki Metro in Finland that utilizes a unique track gauge of 1,522 mm, falls between the Russian gauge and broad gauge .
These gauges cannot make 3-rail dual gauge with Russian gauge.
These gauges are within tolerance.
Dual gauge between Russian gauge and another similar gauge can make these bonus gauges.
Country/territory | Railway | |
---|---|---|
China | Chinese Eastern Railway (until 1930s) | |
Finland | Rail transport in Finland (except: Helsinki Metro uses, and Tampere tram uses standard gauge (1,435 mm)) | |
Iran | Proposed for the south and east of Tehran and the north and east of Estafan. The Indian gauge is proposed for the east of Kerman, the south of Mashhad, and the north and east of Chabahar, whereas the north and west of Tehran and the south and west of Estafan will continue the standard gauge. | |
Isle of Man | Laxey Browside Tramway (closed by 1914), Second Falcon Cliff lift (closed 1990) | |
Japan | Sakhalin-Hokkaido tunnel (proposed), with the break-of-gauge facilities between and in Northern Hokkaido. | |
Norway | Proposed for Kolari-Skibotn-Tromsø and Nikel-Kirkenes-Rovaniemi lines. | |
Panama | Panama Canal Railway prior to conversion to standard gauge in 2000 to suit off-the-shelf supply. | |
Sweden | Only a small freight yard in Haparanda. Used for exchanging cargo with Finnish trains. | |
United States | The South, such as the Cartersville and Van Wert Railroad, the Cherokee Railroad, and the Western & Atlantic Railroad, until 31 May 1886. The Duquesne Incline and Monongahela Incline in Pittsburgh, Pennsylvania. |
Country/territory | Railway |
---|---|
Afghanistan | Rail transport in Afghanistan The northern spur lines from CIS states. For Afghanistan's future network, standard gauge for the western spur lines from Iran, and Indian gauge are proposed. |
Armenia | Armenian Railways, South Caucasus Railway |
Austria | Košice-Vienna broad-gauge line (proposed) |
Azerbaijan | Azerbaijan Railways |
Belarus | Rail transport in Belarus |
Bulgaria | Only at Varna ferry terminal for train ferries to Odesa and Poti; dual gauge track for changing wagon bogies with standard gauge ones, and parallel transhipping tracks of and gauge. |
China | Several short stretches from Russia, Mongolia and Kazakhstan. |
Estonia | Rail transport in Estonia |
France | A short section linking the assembly building to the Soyuz launcher launch pad, at the Guiana Space Center. |
Georgia | Georgian Railway |
Germany | Only at Sassnitz/Mukran ferry terminal for freight train ferries to Turku, Klaipėda and Baltijsk. |
Hong Kong | Peak Tram |
Kazakhstan | Kazakhstan Temir Zholy |
Kyrgyzstan | Kyrgyz Railways |
Latvia | Rail transport in Latvia |
Lithuania | Rail transport in Lithuania |
Moldova | CFM |
Mongolia | Rail transport in Mongolia |
North Korea | A 32-km stretch of 1,435/ dual gauge between Tumangang and Rajin Stations. |
Poland | Almost exclusively on the Broad Gauge Metallurgy Line. |
Russia | Russian Railways |
Slovakia | Only on the "Širokorozchodná trať" (Uzhhorod - Maťovce - Haniska pri Košiciach) and from the border station of Dobrá pri Čiernej nad Tisou to Ukraine, both operated by ZSSK Cargo. |
Tajikistan | Rail transport in Tajikistan Most in the West; Also Indian gauge is proposed for the East. |
Turkmenistan | Railways in Turkmenistan |
Ukraine | Ukrainian Railways |
Uzbekistan | Uzbek Railways |