M\to{R
M
S1
For example, let
M
K=(0,2\pi) x (0,2\pi).
Then we know that a map
X\colonK\to{R
given by
X(\theta,\phi)=((2+\cos\theta)\cos\phi,(2+\cos\theta)\sin\phi,\sin\theta)
is a parametrization for almost all of
M
\pi3\colon{R
G=\pi3|M\colonM\to{R
G=G(\theta,\phi)=\sin\theta
{\rmgrad} G(\theta,\phi)= \left({{\partial}G\over{\partial}\theta},{{\partial}G\over{\partial}\phi}\right)\left(\theta,\phi\right)=(0,0),
this is if and only if
\theta={\pi\over2}, {3\pi\over2}
These two values for
\theta
X({\pi/2},\phi)=(2\cos\phi,2\sin\phi,1)
X({3\pi/2},\phi)=(2\cos\phi,2\sin\phi,-1)
which represent two extremal circles over the torus
M
Observe that the Hessian for this function is
{\rmhess}(G)= \begin{bmatrix}-\sin\theta&0\ 0&0\end{bmatrix}
which clearly it reveals itself as rank of
{\rmhess}(G)
Mimicking the L–S category theory one can define the round complexity asking for whether or not exist round functions on manifolds and/or for the minimum number of critical loops.