In mathematics, a Rosati involution, named after Carlo Rosati, is an involution of the rational endomorphism ring of an abelian variety induced by a polarisation.
Let
A
\hat{A}=Pic0(A)
a\inA
Ta:A\toA
a
Ta(x)=x+a
D
A
\phiD:A\to\hatA
\phiD(a)=[T
*D-D] | |
a |
\phiD
D
End(A) ⊗ Q
\phiD
\psi\inEnd(A) ⊗ Q
-1 | |
\psi'=\phi | |
D |
\circ\hat\psi\circ\phiD
\hat\psi:\hatA\to\hatA
\psi*
Pic(A)
Let
NS(A)
A
\phiD
\Phi:NS(A) ⊗ Q\toEnd(A) ⊗ Q
\PhiE=\phi
-1 | |
D |
\circ\phiE
\Phi
\{\psi\inEnd(A) ⊗ Q:\psi'=\psi\}
E\starF=
12\Phi | |
-1 |
(\PhiE\circ\PhiF+\PhiF\circ\PhiE)
NS(A) ⊗ Q