Rosati involution explained

In mathematics, a Rosati involution, named after Carlo Rosati, is an involution of the rational endomorphism ring of an abelian variety induced by a polarisation.

Let

A

be an abelian variety, let

\hat{A}=Pic0(A)

be the dual abelian variety, and for

a\inA

, let

Ta:A\toA

be the translation-by-

a

map,

Ta(x)=x+a

. Then each divisor

D

on

A

defines a map

\phiD:A\to\hatA

via

\phiD(a)=[T

*D-D]
a
. The map

\phiD

is a polarisation if

D

is ample. The Rosati involution of

End(A)Q

relative to the polarisation

\phiD

sends a map

\psi\inEnd(A)Q

to the map
-1
\psi'=\phi
D

\circ\hat\psi\circ\phiD

, where

\hat\psi:\hatA\to\hatA

is the dual map induced by the action of

\psi*

on

Pic(A)

.

Let

NS(A)

denote the Néron–Severi group of

A

. The polarisation

\phiD

also induces an inclusion

\Phi:NS(A)Q\toEnd(A)Q

via

\PhiE=\phi

-1
D

\circ\phiE

. The image of

\Phi

is equal to

\{\psi\inEnd(A)Q:\psi'=\psi\}

, i.e., the set of endomorphisms fixed by the Rosati involution. The operation

E\starF=

12\Phi
-1

(\PhiE\circ\PhiF+\PhiF\circ\PhiE)

then gives

NS(A)Q

the structure of a formally real Jordan algebra