Robert Zwanzig Explained

Robert Zwanzig
Birth Place:Brooklyn, New York City, United States
Birth Date:9 April 1928
Death Date:May 15, 2014
Death Place:Bethesda, Maryland, United States
Alma Mater:Caltech
Thesis Year:1952
Doctoral Advisor:John G. Kirkwood
Thesis Title:Quantum Hydrodynamics: a statistical mechanical theory of light scattering from simple non-polar fluids
Fields:Theoretical physics
Workplaces:University of Maryland
Known For:Zwanzig equation
Zwanzig projection operator
Nakajima–Zwanzig equation
Mori–Zwanzig formalism

Robert Walter Zwanzig (9 April 1928[1] – May 15, 2014[2]) was an American theoretical physicist and chemist who made important contributions to the statistical mechanics of irreversible processes, protein folding, and the theory of liquids and gases.

Background

Zwanzig received his bachelor's degree from Brooklyn Polytechnic Institute in 1948 and his master's degree from 1950 at the University of Southern California. In 1952 he completed a doctorate in physical chemistry at Caltech under the supervision of John G. Kirkwood. His thesis title was Quantum Hydrodynamics: a statistical mechanical theory of light scattering from simple non-polar fluids. From 1951 to 1954 he worked as a post-doctoral researcher in theoretical chemistry at Yale University, and from 1954 to 1958 he was an assistant professor in chemistry at Johns Hopkins University. From 1958 to 1966 he was a physical chemist at the National Bureau of Standards and from 1966 to 1979 he was a research professor at the Institute for Physical Science and Technology of the University of Maryland, where until 1988 he held he title of distinguished professor. From 1974 to 1975 he was a Fairchild Scholar at Caltech. From 1988 onwards he was a researcher at the National Institutes of Health (National Institute of Diabetes and Digestive and Kidney Diseases) in Bethesda, Maryland, where he was a Fogarty Scholar (1987–88) and later worked as a research scientist emeritus.

One of his early works from 1954 is often cited as the first use of free energy perturbation theory, and the resulting equation for the change in free energy is sometimes referred to as the Zwanzig equation.[3] In the early 1960s he wrote some now classic works on the non-equilibrium thermodynamics and statistical mechanics of irreversible processes. He developed the projection operator formalism, which made it possible to derive irreversible transport equations (such as the Boltzmann equation and other master equations) from reversible microscopic quantum mechanical dynamic equations. He drew heavily from the work of Leon van Hove. The projection operator formalism later found wide application and is now known as the Zwanzig-Mori formalism (also named after, who published similar results in 1965[4]).

An important result of the Mori-Zwanzig formalism, the Nakajima-Zwanzig equation, bears his name and reflects the important contributions of Sadao Nakajima made around the same time.

Together with Tsu-Wei Nee he derived a theory for the dielectric function and dielectric friction of dipolar liquids based on an extension of Lars Onsager's work.[5] Later he worked on the protein folding problem among other things.[6] [7]

Awards and honors

He received many awards, including

He was a Fellow of the National Academy of Sciences and the American Chemical Society.

Selected bibliography

External links

Notes and References

  1. Thirumalai. D.. Greer. S. C.. Zwanzig dedication. The Journal of Physical Chemistry. 1989. 93. 19. 6883–6884. 10.1021/j100356a001.
  2. Robert W. Zwanzig: Formulated nonequilibrium statistical mechanics. Proceedings of the National Academy of Sciences. 111. 32. 11572–3. 1407.5990. Andersen. Hans C.. Chandler. David. 2014. 10.1073/pnas.1412827111. 25077976. 4136600. 2014PNAS..11111572A. free.
  3. Zwanzig, R. W. J. Chem. Phys. 1954, 22, 1420-1426.
  4. Mori Transport, collective motion and brownian motion, Progr. Theor. Phys., Suppl., Band 33, 1965, S. 423-455
  5. Nee. Tsu-Wei. Theory of Dielectric Relaxation in Polar Liquids. The Journal of Chemical Physics. 1970. 52. 12. 6353–6363. 10.1063/1.1672951. 1970JChPh..52.6353N .
  6. Zwanzig . R . 1997 . Two-state models of protein folding kinetics . Proceedings of the National Academy of Sciences of the United States of America . 94 . 1. 148–150 . 10.1073/pnas.94.1.148. 1997PNAS...94..148Z. 19262 . 8990176. free .
  7. Zwanzig . R . 1995 . Simple model of protein folding kinetics . Proc Natl Acad Sci USA . 92 . 21 . 9801–9804 . 10.1073/pnas.92.21.9801. 1995PNAS...92.9801Z. 40890 . 7568221. free .