Ringschluss Explained

In mathematics, a Ringschluss is a mathematical proof technique where the equivalence of several statements can be proven without having to prove all pairwise equivalences directly.

In order to prove that the statements

\varphi1,\ldots,\varphin

are each pairwise equivalent, proofs are given for the implications

\varphi1 ⇒ \varphi2

,

\varphi2 ⇒ \varphi3

,

...

,

\varphin-1\varphin

and

\varphin\varphi1

.[1] [2]

The pairwise equivalence of the statements then results from the transitivity of the material conditional.

Example

For

n=4

the proofs are given for

\varphi1 ⇒ \varphi2

,

\varphi2 ⇒ \varphi3

,

\varphi3 ⇒ \varphi4

and

\varphi4 ⇒ \varphi1

. The equivalence of

\varphi2

and

\varphi4

results from the chain of conclusions that are no longer explicitly given:

\varphi2\varphi3

\varphi3\varphi4

. This leads to:

\varphi2\varphi4

\varphi4\varphi1

\varphi1\varphi2

. This leads to:

\varphi4\varphi2

That is

\varphi2\Leftrightarrow\varphi4

.

Motivation

The technique saves writing effort above all. By dispensing with the formally necessary chain of conclusions, only

n

direct proofs need to be provided for

\varphii\varphij

instead of

n(n-1)

direct proofs. The difficulty for the mathematician is to find a sequence of statements that allows for the most elegant direct proofs possible.

See also

Notes and References

  1. Book: Plaue . Matthias . Mathematik für das Bachelorstudium I: Grundlagen und Grundzüge der linearen Algebra und Analysis . Scherfner . Mike . 2019-02-11 . Springer-Verlag . 978-3-662-58352-4 . 26 . de . Mathematics for the Bachelor's degree I: Fundamentals and basics of linear algebra and analysis.
  2. Book: Struckmann . Werner . Mathematik für Informatiker: Grundlagen und Anwendungen . Wätjen . Dietmar . 2016-10-20 . Springer-Verlag . 978-3-662-49870-5 . 28 . de . Mathematics for Computer Scientists: Fundamentals and Applications.