In mathematics, a Ringschluss is a mathematical proof technique where the equivalence of several statements can be proven without having to prove all pairwise equivalences directly.
In order to prove that the statements
\varphi1,\ldots,\varphin
\varphi1 ⇒ \varphi2
\varphi2 ⇒ \varphi3
...
\varphin-1 ⇒ \varphin
\varphin ⇒ \varphi1
The pairwise equivalence of the statements then results from the transitivity of the material conditional.
For
n=4
\varphi1 ⇒ \varphi2
\varphi2 ⇒ \varphi3
\varphi3 ⇒ \varphi4
\varphi4 ⇒ \varphi1
\varphi2
\varphi4
\varphi2 ⇒ \varphi3
\varphi3 ⇒ \varphi4
\varphi2 ⇒ \varphi4
\varphi4 ⇒ \varphi1
\varphi1 ⇒ \varphi2
\varphi4 ⇒ \varphi2
That is
\varphi2\Leftrightarrow\varphi4
The technique saves writing effort above all. By dispensing with the formally necessary chain of conclusions, only
n
\varphii ⇒ \varphij
n(n-1)