Retinoblastoma Explained

Retinoblastoma
Field:Neuro-oncology
Symptoms:Leukocoria seen in patient's pupil in photos
Poor vision
One or both eyes turning inward or outward
Eye pain[1]
Onset:Under 3 years old
Treatment:Surgery (including eye removal in advanced cases)
Chemotherapy (after surgery in cases of metastasis)
Focal therapy
Frequency:~250–300 children diagnosed annually (United States)

Retinoblastoma (Rb) is a rare form of cancer that rapidly develops from the immature cells of a retina, the light-detecting tissue of the eye. It is the most common primary malignant intraocular cancer in children, especially those under 3 years old.[2] [3]

Though most children in high income countries survive this cancer,[4] they may lose their vision in the affected eye(s)[5] or need to have the eye removed.[4]

Almost half of children with retinoblastoma have a hereditary genetic defect associated with it. In other cases, retinoblastoma is caused by a congenital mutation in the chromosome 13 gene 13q14 (retinoblastoma protein).[6]

Signs and symptoms

Retinoblastoma is the most intrusive intraocular cancer among children. The chance of survival and preservation of the eye depends fully on the severity. Retinoblastoma is extremely rare as there are only about 200 to 300 cases every year in the United States. Globally, only 1 in about 15,000 children have this malignancy, though rates continue to increase.[7]

Intraocular malignancies are relatively more frequently treated than extraocular malignancies, likely due to a relatively earlier detection and subsequent treatment. Pediatricians may screen infants with annual vision tests, in which anomalies can be detected. During a red reflex test, light from an ophthalmoscope goes through transparent parts of the eye and reflects off the ocular fundus. If retinoblastoma is present, it may partially or fully impede light transversing this path. This may result in an abnormal red reflex or leucocoria, which can be a common indicator of retinoblastoma (when light is reflected by the tumor, the regular view of the red retina is blocked). The retinoblastoma may be visible as a whitish, translucent mass.[8] If the tumor has not spread and is contained within the eye, chances of successful treatment are favorable. If initial signs are ignored or diagnosis is significantly delayed, outcomes and prognosis worsen. The effects of retinoblastoma may spread outside the eye, sometimes resulting in proptosis. Retinoblastoma that has spread may be significantly more difficult to treat.[9]

The most common and obvious sign of retinoblastoma is an abnormal appearance of the retina as viewed through the pupil, the medical term for which is leukocoria, also known as amaurotic cat's eye reflex. Other signs and symptoms include deterioration of vision, a red and irritated eye with glaucoma, and faltering growth or delayed development. Some children with retinoblastoma can develop a squint,[10] commonly referred to as "cross-eyed" or "wall-eyed" (strabismus). Retinoblastoma presents with advanced disease in developing countries and eye enlargement is a common finding.[11]

Depending on the position of the tumors, they may be visible during a simple eye examination using an ophthalmoscope to look through the pupil. A positive diagnosis is usually made only with an examination under anesthetic (EUA). A white eye reflection is not always a positive indication of retinoblastoma and can be caused by light being reflected badly[12] or by other conditions such as Coats' disease.[13]

The presence of the photographic fault red eye in only one eye and not in the other may be a sign of retinoblastoma. A clearer sign is "white eye" or "cat's eye" (leukocoria).[14]

Cause

Mutation of genes, found in chromosomes, can affect the way in which cells grow and develop within the body.[15] Alterations in RB1 or MYCN can give rise to retinoblastoma.

RB1

In children with the heritable genetic form of retinoblastoma, a mutation occurs in the RB1 gene on chromosome 13. RB1 was the first tumor suppressor gene cloned.[15] Although RB1 interacts with over 100 cell proteins,[15] its negative regulator effect on the cell cycle principally arises from binding and inactivation of the transcription factor E2F, thus repressing the transcription of genes which are required for the S phase.[15]

The defective RB1 gene can be inherited from either parent; in some children, however, the mutation occurs in the early stages of fetal development. The expression of the RB1 allele is autosomal dominant with 90% penetrance.[16]

Inherited forms of retinoblastomas are more likely to be bilateral. In addition, inherited uni- or bilateral retinoblastomas may be associated with pineoblastoma and other malignant midline supratentorial primitive neuroectodermal tumors (PNETs) with a dismal outcome; retinoblastoma concurrent with a PNET is known as trilateral retinoblastoma.[17] A 2014 meta-analysis showed that 5-year survival of trilateral retinoblastoma increased from 6% before 1995 to 57% by 2014, attributed to early detection and improved chemotherapy.[18]

The development of retinoblastoma can be explained by the two-hit model. According to the two-hit model, both alleles need to be affected, so two events are necessary for the retinal cell or cells to develop into tumors. The first mutational event can be inherited (germline or constitutional), which will then be present in all cells in the body. The second “hit” results in the loss of the remaining normal allele (gene) and occurs within a particular retinal cell.[19] In the sporadic, nonheritable form of retinoblastoma, both mutational events occur within a single retinal cell after fertilization (somatic events); sporadic retinoblastoma tends to be unilateral.

Several methods have been developed to detect the RB1 gene mutations.[20] [21] Attempts to correlate gene mutations to the stage at presentation have not shown convincing evidence of a correlation.[22]

MYCN

Not all retinoblastoma cases are with RB1 inactivation. There are cases reported with only one RB1 mutation or even two functional RB1 alleles, which indicates other oncogenic lesions of retinoblastoma.[23] Somatic amplification of the MYCN oncogene is responsible for some cases of nonhereditary, early-onset, aggressive, unilateral retinoblastoma. MYCN can act as a transcription factor and promotes proliferation by regulating the expression of cell cycle genes.[24] [25] Although MYCN amplification accounted for only 1.4% of retinoblastoma cases, researchers identified it in 18% of infants diagnosed at less than 6 months of age. Median age at diagnosis for MYCN retinoblastoma was 4.5 months, compared with 24 months for those who had nonfamilial unilateral disease with two RB1 gene mutations.[26]

Diagnosis

Screening for retinoblastoma should be part of a "well baby" screening for newborns during the first 3 months of life, to include:[27]

Classification

The two forms of the disease are a heritable form and nonheritable form (all cancers are considered genetic in that mutations of the genome are required for their development, but this does not imply that they are heritable, or transmitted to offspring). Approximately 40% of patients have a heritable form of retinoblastoma, carrying a mutation in the RB1 gene.[28] If no history of the disease exists within the family, the disease is labeled "sporadic", but this does not necessarily indicate that it is the nonheritable form. Bilateral retinoblastomas are commonly heritable, while unilateral retinoblastomas are commonly nonheritable.

In about two-thirds of cases,[29] only one eye is affected (unilateral retinoblastoma); in the other third, tumors develop in both eyes (bilateral retinoblastoma). The number and size of tumors on each eye may vary. In certain cases, the pineal gland or the suprasellar or parasellar region (or in very rare cases other midline intracranial locations) is also affected (trilateral retinoblastoma). The position, size, and quantity of tumors are considered when choosing the type of treatment for the disease.

Differential diagnosis

1. Persistent fetal vasculature is a congenital developmental anomaly of the eye resulting from failure of the embryological, primary vitreous, and hyaloid vasculature to regress, whereby the eye is shorter, develops a cataract, and may present with whitening of the pupil.

2. Coats disease is a typically unilateral disease characterised by abnormal development of blood vessels behind the retina, leading to blood vessel abnormalities in the retina and retinal detachment to mimic retinoblastoma.

3. Toxocariasis is a parasitic disease of the eye associated with exposure to infected puppies, which causes a retinal lesion leading to retinal detachment.

4. Retinopathy of prematurity is associated with low-birth-weight infants who receive supplemental oxygen in the period immediately after birth, and it involves damage to the retinal tissue and may lead to retinal detachment.

5. Congenital Cataract

6. Norrie Disease

If the eye examination is abnormal, further testing may include imaging studies, such as computerized tomography (CT), magnetic resonance imaging (MRI), and ultrasound.[30] CT and MRI can help define the structure abnormalities and reveal any calcium depositions. Ultrasound can help define the height and thickness of the tumor. Bone marrow examination or lumbar puncture may also be done to determine any metastases to bones or the brain.

Morphology

Gross and microscopic appearances of retinoblastoma are identical in both hereditary and sporadic types. Macroscopically, viable tumor cells are found near blood vessels, while zones of necrosis are found in relatively avascular areas. Microscopically, both undifferentiated and differentiated elements may be present. Undifferentiated elements appear as collections of small, round cells with hyperchromatic nuclei; differentiated elements include Flexner-Wintersteiner rosettes, Homer Wright rosettes,[31] and fleurettes from photoreceptor differentiation.[32]

Genetic testing

Identifying the RB1 gene mutation that led to a child's retinoblastoma can be important in the clinical care of the affected individual and in the care of (future) siblings and offspring. It may run in the family.

  1. Bilaterally affected individuals and 13-15% of unilaterally affected individuals,[33] [34] are expected to show an RB1 mutation in blood. By identifying the RB1 mutation in the affected individual, (future) siblings, children, and other relatives can be tested for the mutation; if they do not carry the mutation, child relatives are not at risk of retinoblastoma, so need not undergo the trauma and expense of examinations under anaesthetic.[35] For the 85% of unilaterally affected patients found not to carry either of their eye tumor RB1 mutations in blood, neither molecular testing nor clinical surveillance of siblings is required.
  2. If the RB1 mutation of an affected individual is identified, amniotic cells in an at-risk pregnancy can be tested for the family mutation; any fetus that carries the mutation can be delivered early, allowing early treatment of any eye tumors, leading to better visual outcomes.
  3. For cases of unilateral retinoblastoma where no eye tumor is available for testing, if no RB1 mutation is detected in blood after high-sensitivity molecular testing (i.e. >93% RB1 mutation detection sensitivity), the risk of a germline RB1 mutation is reduced to less than 1%, a level at which only clinic examination (and not examinations under anaesthetic) is recommended for the affected individual and their future offspring (National Retinoblastoma Strategy, Canadian Guidelines for Care).[36]

Imaging

Traditional ultrasound B scan can detect calcifications in the tumour while high-frequency ultrasound B scan is able to provide higher resolution than the traditional ultrasound and determine the proximity of the tumour with front portion of the eye. MRI scan can detect high-risk features such as optic nerve invasion; choroidal invasion, scleral invasion, and intracranial invasion. CT scan is generally avoided because radiation can stimulate the formation of more eye tumours in those with RB1 genetic mutation.[37]

Staging

In order to properly diagnose retinoblastoma, there must be guidelines to follow to properly classify the risk of the tumor. The Reese Ellsworth Classification System, by Dr. Algernon Reese and Dr. Robert Ellsworth, is universally used to determine the size, location, and multi-focality of the tumor.[38] The system was originally used to decide the best treatment result by using external beam radiotherapy, as well as, the likeliness of salvaging the globe of the eye. Due to chemotherapy not being part of the Reese Ellsworth Classification System, there needed to be an updated classification system to foresee the treatment outcomes of chemotherapy. The International Classification for Intraocular Retinoblastoma is now the current system being used, and it was created by Murphree and associates. According to Reese and Ellsworth, there were different groups that had various features in order to classify the globe salvage as very favorable to the category of very unfavorable. In order to salvage the affected eye, the disc diameter had to be around 4DD and behind the equator to have higher favorability. If the tumor was around ten in disc diameter and involved roughly 50% of the retina, it was considered unfavorable to salvage the globe which could result in enucleation. According to Murphree, the different groups were classified from very low risk to very high risk which was determined by features of the given tumor. Very low risk means that the tumor has to be less than 3mm and there must be no seeding of the vitreous or sub-retinal area. When a patient is very high risk, the tumor presents itself with multiple features and is going to have to be treated with conservative treatment modalities or enucleation.[39]

GroupClinical Features
AVery low riskAll tumors are 3mm or smaller, confined to the retina, and located at least 3mm from the foveola and 1.5mm from the optic nerve. No vitreous or subretinal seeding
BLow riskRetinal tumors may be any size or location not in Group A, No vitreous or subretinal seeding allowed. A small cuff of subretinal fluid extending no more than 5mm from the base of the tumor is allowed
CModerate riskEyes with only focal vitreous or subretinal seeding and discrete retinal tumors of any size and location. Vitreous or subretinal seeding may extend no more than 3mm from the tumor. Up to one quadrant of subretinal fluid may be present
DHigh riskEyes with diffuse vitreous or subretinal seeding and/or massive, nondiscrete endophytic or exophytic disease. More than one quadrant of retinal detachment
EVery high risk eyesEyes with one or more of the following:Irreversible neovascular glaucoma

Massive intraocular hemorrhage

Aseptic orbital cellulitis

Phthisis or pre-phthisis

Tumor anterior to anterior vitreous face

Tumor touching the lens

Diffuse infiltrating retinoblastoma

International Classification for Intraocular Retinoblastoma

Treatment

The priority of retinoblastoma treatment is to preserve the life of the child, then to preserve vision, and then to minimize complications or side effects of treatment. The exact course of treatment depends on the individual case and is decided by the ophthalmologist in discussion with the paediatric oncologist.[40] Correct treatment also depends on the mutation type, whether it is a germline RB1 mutation, a sporadic RB1 mutation or MYCN amplification with functional RB1.[41] Children with involvement of both eyes at diagnosis usually require multimodality therapy (chemotherapy, local therapies).

The various treatment modalities for retinoblastoma includes:[40] [42] [43]

Prognosis

In the developed world, retinoblastoma has one of the best cure rates of all childhood cancers (95-98%), with more than 90% of sufferers surviving into adulthood. In the UK, around 40 to 50 new cases are diagnosed each year.[50] Good prognosis depends upon early presentation of the child in health facility.[51] Late presentation is associated with a poor prognosis.[52] Survivors of hereditary retinoblastoma have a higher risk of developing other cancers later in life.

Epidemiology

Retinoblastoma presents with cumulative lifetime incidence rate of one case of retinoblastoma per 18000 to 30000 live births worldwide.[53] A higher incidence is noted in developing countries, which has been attributed to lower socioeconomic status and the presence of human papilloma virus sequences in the retinoblastoma tissue.[54]

Almost 80% of children with retinoblastoma are diagnosed before three years of age and diagnosis in children above six years of age is extremely rare.[55] In the UK, bilateral cases usually present within 14 to 16 months, while diagnosis of unilateral cases peaks between 24 and 30 months.

See also

External links

Notes and References

  1. Web site: Retinoblastoma. March 9, 2022. St. Jude Children's Research Hospital.
  2. Rao R, Honavar SG . Retinoblastoma . Indian Journal of Pediatrics . 84 . 12 . 937–944 . December 2017 . 28620731 . 10.1007/s12098-017-2395-0 .
  3. Book: American Cancer Society . Cancer Medicine . 2003 . BC Decker Inc . Hamilton, Ontario . 978-1-55009-213-4 . Chapter 85. Neoplasms of the Eye . https://www.ncbi.nlm.nih.gov/books/bv.fcgi?highlight=Retinoblastoma&rid=cmed6.section.20082#20085 . registration .
  4. Dimaras H, Corson TW, Cobrinik D, White A, Zhao J, Munier FL, Abramson DH, Shields CL, Chantada GL, Njuguna F, Gallie BL . Retinoblastoma . Nature Reviews. Disease Primers . 1 . 15021 . August 2015 . 27189421 . 5744255 . 10.1038/nrdp.2015.21 .
  5. Warda O, Naeem Z, Roelofs KA, Sagoo MS, Reddy MA . Retinoblastoma and vision . Eye . 37 . 5 . 797–808 . April 2023 . 34987197 . 10050411 . 10.1038/s41433-021-01845-y . 245672434 .
  6. Book: Ryan SJ, Schachat AP, Wilkinson CP, Hinton DR, Sadda SR, Wiedemann P . Retina. Elsevier Health Sciences. 978-1455737802. 2105. en. 2012-11-01.
  7. Web site: Retinoblastoma - Symptoms and causes. 2021-03-17. Mayo Clinic. en.
  8. Book: Dimaras H, Gallie BL . Retinoblastoma Protein, Biological and Clinical Functions . 2016 . Encyclopedia of Cancer . 1–5 . Schwab M . Berlin, Heidelberg . Springer . en . 10.1007/978-3-642-27841-9_5069-9 . 978-3-642-27841-9 .
  9. Dimaras H, Kimani K, Dimba EA, Gronsdahl P, White A, Chan HS, Gallie BL . Retinoblastoma . Lancet . 379 . 9824 . 1436–1446 . April 2012 . 22414599 . 10.1016/s0140-6736(11)61137-9 . 235331617 . free .
  10. Elkington AR, Khaw PT . ABC of eyes. Squint . BMJ . 297 . 6648 . 608–611 . September 1988 . 3139234 . 1834556 . 10.1136/bmj.297.6648.608 .
  11. Web site: Retinoblastoma National Eye Institute . live . https://web.archive.org/web/20220826025537/https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/retinoblastoma . 2022-08-26 . 2022-08-26 . www.nei.nih.gov.
  12. Web site: Seen a white glow in a photograph? . chect.org.uk . 18 January 2017 . The Childhood Eye Cancer Trust . 2022-12-31.
  13. Balmer A, Munier F . Differential diagnosis of leukocoria and strabismus, first presenting signs of retinoblastoma . Clinical Ophthalmology . 1 . 4 . 431–439 . December 2007 . 19668520 . 2704541 .
  14. http://www.daisyfund.org/rb/leuko/index.html Introduction to White Eye
  15. Du W, Pogoriler J . Retinoblastoma family genes . Oncogene . 25 . 38 . 5190–5200 . August 2006 . 16936737 . 1899835 . 10.1038/sj.onc.1209651 .
  16. Book: Lohmann DR, Gallie BL . Retinoblastoma . 1993 . http://www.ncbi.nlm.nih.gov/books/NBK1452/ . Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, Gripp KW, Amemiya A . GeneReviews® . Seattle (WA) . University of Washington, Seattle . 20301625 . 2022-06-27 .
  17. Kivelä T . Trilateral retinoblastoma: a meta-analysis of hereditary retinoblastoma associated with primary ectopic intracranial retinoblastoma . Journal of Clinical Oncology . 17 . 6 . 1829–1837 . June 1999 . 10561222 . 10.1200/JCO.1999.17.6.1829 .
  18. de Jong MC, Kors WA, de Graaf P, Castelijns JA, Kivelä T, Moll AC . Trilateral retinoblastoma: a systematic review and meta-analysis . The Lancet. Oncology . 15 . 10 . 1157–1167 . September 2014 . 25126964 . 10.1016/s1470-2045(14)70336-5 .
  19. Harbour J.W., Dean D.C. Rb function in cell-cycle regulation and apoptosis" Nature Cell Biology. 2000;94:E65–E67.
  20. Parsam VL, Kannabiran C, Honavar S, Vemuganti GK, Ali MJ . A comprehensive, sensitive and economical approach for the detection of mutations in the RB1 gene in retinoblastoma . Journal of Genetics . 88 . 4 . 517–527 . December 2009 . 20090211 . 10.1007/s12041-009-0069-z . 10723496 .
  21. Book: GeneReviews . Lohmann DR, Gallie BL . 2010 . University of Washington. Seattle, WA . Retinoblastoma . 20301625.
  22. Ali MJ, Parsam VL, Honavar SG, Kannabiran C, Vemuganti GK, Reddy VA . RB1 gene mutations in retinoblastoma and its clinical correlation . Saudi Journal of Ophthalmology . 24 . 4 . 119–123 . October 2010 . 23960888 . 3729507 . 10.1016/j.sjopt.2010.05.003 .
  23. Rushlow DE, Mol BM, Kennett JY, Yee S, Pajovic S, Thériault BL, Prigoda-Lee NL, Spencer C, Dimaras H, Corson TW, Pang R, Massey C, Godbout R, Jiang Z, Zacksenhaus E, Paton K, Moll AC, Houdayer C, Raizis A, Halliday W, Lam WL, Boutros PC, Lohmann D, Dorsman JC, Gallie BL . Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies . The Lancet. Oncology . 14 . 4 . 327–334 . April 2013 . 23498719 . 10.1016/S1470-2045(13)70045-7 .
  24. Woo CW, Tan F, Cassano H, Lee J, Lee KC, Thiele CJ . Use of RNA interference to elucidate the effect of MYCN on cell cycle in neuroblastoma . Pediatric Blood & Cancer . 50 . 2 . 208–212 . February 2008 . 17420990 . 10.1002/pbc.21195 . 22765085 .
  25. Stenfelt S, Blixt MK, All-Ericsson C, Hallböök F, Boije H . Heterogeneity in retinoblastoma: a tale of molecules and models . Clinical and Translational Medicine . 6 . 1 . 42 . November 2017 . 29124525 . 5680409 . 10.1186/s40169-017-0173-2 . free .
  26. Lewis R . Some Aggressive Retinoblastomas Lack RB1 Mutations . Medscape Online . March 19, 2013 . live . https://web.archive.org/web/20170919082102/http://www.medscape.com/viewarticle/781040 . September 19, 2017 .
  27. Malik AN, Evans JR, Gupta S, Mariotti S, Gordon I, Bowman R, Gilbert C . Universal newborn eye screening: a systematic review of the literature and review of international guidelines . Journal of Global Health . 12 . 12003 . October 2022 . 36269293 . 9586142 . 10.7189/jogh.12.12003 .
  28. Tonorezos ES, Friedman DN, Barnea D, Bosscha MI, Chantada G, Dommering CJ, de Graaf P, Dunkel IJ, Fabius AW, Francis JH, Greer MC, Kleinerman RA, Kors WA, Laughlin S, Moll AC, Morton LM, Temming P, Tucker MA, van Leeuwen FE, Walsh MF, Oeffinger KC, Abramson DH . Recommendations for Long-Term Follow-up of Adults with Heritable Retinoblastoma . Ophthalmology . 127 . 11 . 1549–1557 . November 2020 . 32422154 . 7606265 . 10.1016/j.ophtha.2020.05.024 .
  29. MacCarthy A, Birch JM, Draper GJ, Hungerford JL, Kingston JE, Kroll ME, Onadim Z, Stiller CA, Vincent TJ, Murphy MF . Retinoblastoma in Great Britain 1963-2002 . The British Journal of Ophthalmology . 93 . 1 . 33–37 . January 2009 . 18838413 . 10.1136/bjo.2008.139618 . 27049728 .
  30. de Jong MC, de Graaf P, Noij DP, Göricke S, Maeder P, Galluzzi P, Brisse HJ, Moll AC, Castelijns JA . Diagnostic performance of magnetic resonance imaging and computed tomography for advanced retinoblastoma: a systematic review and meta-analysis . Ophthalmology . 121 . 5 . 1109–1118 . May 2014 . 24589388 . 10.1016/j.ophtha.2013.11.021 .
  31. Book: Sehu WK, Lee W . Ophthalmic pathology : an illustrated guide for clinicians. 2005. Blackwell Publishing. Malden. 978-0-7279-1779-9. 262.
  32. Book: Kumar V, Abbas AK, Fausto N . Robbins pathologic basis of disease. . 1999 . Saunders . Philadelphia . 978-0-7216-0187-8 . 6th . 1442 .
  33. Schüler A, Weber S, Neuhäuser M, Jurklies C, Lehnert T, Heimann H, Rudolph G, Jöckel KH, Bornfeld N, Lohmann DR . Age at diagnosis of isolated unilateral retinoblastoma does not distinguish patients with and without a constitutional RB1 gene mutation but is influenced by a parent-of-origin effect . European Journal of Cancer . 41 . 5 . 735–740 . March 2005 . 15763650 . 10.1016/j.ejca.2004.12.022 .
  34. Rushlow D, Piovesan B, Zhang K, Prigoda-Lee NL, Marchong MN, Clark RD, Gallie BL . Detection of mosaic RB1 mutations in families with retinoblastoma . Human Mutation . 30 . 5 . 842–851 . May 2009 . 19280657 . 10.1002/humu.20940 . 31887184 .
  35. Richter S, Vandezande K, Chen N, Zhang K, Sutherland J, Anderson J, Han L, Panton R, Branco P, Gallie B . Sensitive and efficient detection of RB1 gene mutations enhances care for families with retinoblastoma . American Journal of Human Genetics . 72 . 2 . 253–269 . February 2003 . 12541220 . 379221 . 10.1086/345651 .
  36. ((Canadian Ophthalmological Society)) . National Retinoblastoma Strategy Canadian Guidelines for Care . Canadian Journal of Ophthalmology . 44 . Suppl 2 . S1-88 . December 2009 . 20237571 . 10.3129/i09-194 . dead . https://web.archive.org/web/20110929000637/http://www.eyesite.ca/resources/CPGs/COS_RetinoblastomaCPGs_Dec09.pdf . 2011-09-29 .
  37. Dimaras H, Corson TW . Retinoblastoma, the visible CNS tumor: A review . Journal of Neuroscience Research . 97 . 1 . 29–44 . January 2019 . 29314142 . 6034991 . 10.1002/jnr.24213 .
  38. Chawla B, Jain A, Azad R . Conservative treatment modalities in retinoblastoma . Indian Journal of Ophthalmology . 61 . 9 . 479–485 . September 2013 . 24104705 . 3831762 . 10.4103/0301-4738.119424 . free .
  39. Fabian ID, Reddy A, Sagoo MS . Classification and staging of retinoblastoma . Community Eye Health . 31 . 101 . 11–13 . 2018 . 29915461 . 5998397 .
  40. Chintagumpala M, Chevez-Barrios P, Paysse EA, Plon SE, Hurwitz R . Retinoblastoma: review of current management . The Oncologist . 12 . 10 . 1237–1246 . October 2007 . 17962617 . 10.1634/theoncologist.12-10-1237 . 15465073 . 10.1.1.585.5448 .
  41. Li WL, Buckley J, Sanchez-Lara PA, Maglinte DT, Viduetsky L, Tatarinova TV, Aparicio JG, Kim JW, Au M, Ostrow D, Lee TC, O'Gorman M, Judkins A, Cobrinik D, Triche TJ . A Rapid and Sensitive Next-Generation Sequencing Method to Detect RB1 Mutations Improves Care for Retinoblastoma Patients and Their Families . The Journal of Molecular Diagnostics . 18 . 4 . 480–493 . July 2016 . 27155049 . 5820122 . 10.1016/j.jmoldx.2016.02.006 .
  42. Zhao B, Li B, Liu Q, Gao F, Zhang Z, Bai H, Wang Y . Effects of matrine on the proliferation and apoptosis of vincristine-resistant retinoblastoma cells . Experimental and Therapeutic Medicine . 20 . 3 . 2838–2844 . September 2020 . 32765780 . 7401942 . 10.3892/etm.2020.8992 .
  43. Li C, Dong K, Zhuang Y, Luo Z, Qiu D, Luo Y, Li J, Xing D, Ma M, Wu W, Sun S . ACOT7 promotes retinoblastoma resistance to vincristine by regulating fatty acid metabolism reprogramming . Heliyon . 10 . 5 . e27156 . March 2024 . 38463820 . 10920713 . 10.1016/j.heliyon.2024.e27156 . free .
  44. Roarty JD, McLean IW, Zimmerman LE . Incidence of second neoplasms in patients with bilateral retinoblastoma . Ophthalmology . 95 . 11 . 1583–1587 . November 1988 . 3211467 . 10.1016/s0161-6420(88)32971-4 .
  45. Shields CL, Ramasubramanian A, Rosenwasser R, Shields JA . Superselective catheterization of the ophthalmic artery for intraarterial chemotherapy for retinoblastoma . Retina . 29 . 8 . 1207–1209 . September 2009 . 19734768 . 10.1097/IAE.0b013e3181b4ce39 . 47557934 .
  46. Shome D, Poddar N, Sharma V, Sheorey U, Maru GB, Ingle A, Sarin R, Banavali S, Dikshit R, Jain V, Honavar S, Bellare J . Does a nanomolecule of Carboplatin injected periocularly help in attaining higher intravitreal concentrations? . Investigative Ophthalmology & Visual Science . 50 . 12 . 5896–5900 . December 2009 . 19628744 . 10.1167/iovs.09-3914 . 7361361 .
  47. Kang SJ, Durairaj C, Kompella UB, O'Brien JM, Grossniklaus HE . Subconjunctival nanoparticle carboplatin in the treatment of murine retinoblastoma . Archives of Ophthalmology . 127 . 8 . 1043–1047 . August 2009 . 19667343 . 2726977 . 10.1001/archophthalmol.2009.185 .
  48. Fabian ID, Johnson KP, Stacey AW, Sagoo MS, Reddy MA . Focal laser treatment in addition to chemotherapy for retinoblastoma . The Cochrane Database of Systematic Reviews . 2017 . 6 . CD012366 . June 2017 . 28589646 . 6481366 . 10.1002/14651858.CD012366.pub2 .
  49. Shields CL, Mashayekhi A, Cater J, Shelil A, Ness S, Meadows AT, Shields JA . Macular retinoblastoma managed with chemoreduction: analysis of tumor control with or without adjuvant thermotherapy in 68 tumors . Archives of Ophthalmology . 123 . 6 . 765–773 . June 2005 . 15955977 . 10.1001/archopht.123.6.765 .
  50. Beddard N, McGeechan GJ, Taylor J, Swainston K . Childhood eye cancer from a parental perspective: The lived experience of parents with children who have had retinoblastoma . European Journal of Cancer Care . 29 . 2 . e13209 . March 2020 . 31845431 . 10.1111/ecc.13209 . 196549559 . free .
  51. Book: Concise ophthalmology : for medical students . 2014 . Paramount Books . Karachi, Pakistan . 9789696370017 . 4th . 80–81 .
  52. Rai P, Shah IA, Narsani AK, Lohana MK, Memon MK, Memon MA . Too late presentation of 53 patients with retinoblastoma. . International Journal of Ophthalmology . 2009 . 9 . 2 . 227–230 . 10.3969/j.issn.1672-5123.2009.02.005 .
  53. Abramson DH, Schefler AC . Update on retinoblastoma . Retina . 24 . 6 . 828–848 . December 2004 . 15579980 . 10.1097/00006982-200412000-00002 . 26883037 .
  54. Orjuela M, Castaneda VP, Ridaura C, Lecona E, Leal C, Abramson DH, Orlow I, Gerald W, Cordon-Cardo C . Presence of human papilloma virus in tumor tissue from children with retinoblastoma: an alternative mechanism for tumor development . Clinical Cancer Research . 6 . 10 . 4010–4016 . October 2000 . 11051250 .
  55. Abramson DH, Frank CM, Susman M, Whalen MP, Dunkel IJ, Boyd NW . Presenting signs of retinoblastoma . The Journal of Pediatrics . 132 . 3 Pt 1 . 505–508 . March 1998 . 9544909 . 10.1016/s0022-3476(98)70028-9 .