In number theory, a rational reciprocity law is a reciprocity law involving residue symbols that are related by a factor of +1 or –1 rather than a general root of unity.
As an example, there are rational biquadratic and octic reciprocity laws. Define the symbol (x|p)k to be +1 if x is a k-th power modulo the prime p and -1 otherwise.
Let p and q be distinct primes congruent to 1 modulo 4, such that (p|q)2 = (q|p)2 = +1. Let p = a2 + b2 and q = A2 + B2 with aA odd. Then
(p|q)4(q|p)4=(-1)(q-1)/4(aB-bA|q)2 .
If in addition p and q are congruent to 1 modulo 8, let p = c2 + 2d2 and q = C2 + 2D2. Then
(p|q)8=(q|p)8=(aB-bA|q)4(cD-dC|q)2 .