Rank SIFT explained

Rank SIFT algorithm is the revised SIFT (Scale-invariant feature transform) algorithm which uses ranking techniques to improve the performance of the SIFT algorithm. In fact, ranking techniques can be used in key point localization or descriptor generation of the original SIFT algorithm.

SIFT With Ranking Techniques

Ranking the Key Point

Ranking techniques can be used to keep certain number of key points which are detected by SIFT detector.[1]

Suppose

\left\{Im,m=0,1,...M\right\}

is a training image sequence and

p

is a key point obtained by SIFT detector. The following equation determines the rank of

p

in the key point set. Larger value of

R(p)

corresponds to the higher rank of

p

.

R(p\inI0)=\summ

I(min
q\inIm

{\lVertHm(p)-q\rVert}2<\epsilon),

where

I(.)

is the indicator function,

Hm

is the homography transformation from

I0

to

Im

, and

\epsilon

is the threshold.

Suppose

xi

is the feature descriptor of key point

pi

defined above. So

xi

can be labeled with the rank of

pi

in the feature vector space. Then the vector set

Xfeature=\left\{\vecx1,\vecx2,...\right\}

containing labeled elements can be used as a training set for the Ranking SVM[2] problem.

The learning process can be represented as follows:

\begin{array}{lcl} minimize:V(\vecw)={1\over2}\vecw\vecw\\ s.t.\\begin{array}{lcl}\forall\vecxiand\vecxj\inXfeature,\\ \vecwT(\vecxi-\vecxj)\geqq1   ifR(pi\inI0)>R(pj\inI0). \end{array} \end{array}

The obtained optimal

\vecw*

can be used to order the future key points.

Ranking the Elements of Descriptor

Ranking techniques also can be used to generate the key point descriptor.[3]

Suppose

{\vecX}=\left\{x1,...,xN\right\}

is the feature vector of a key point and the elements of

{R}=\left\{r1,...rN\right\}

is the corresponding rank of

xi

in

X

.

ri

is defined as follows:

ri=\left\vert\left\{xk:xk\geqqxi\right\}\right\vert.

After transforming original feature vector

\vecX

to the ordinal descriptor

\vecR

, the difference between two ordinal descriptors can be evaluated in the following two measurements.

The Spearman correlation coefficient also refers to Spearman's rank correlation coefficient.For two ordinal descriptors

\vecR

and

\vecR'

, it can be proved that

\rho(\vecR,\vecR')=1-

N(r
{6\sum
i-r
')
i

2\overN(N2-1)}

The Kendall's Tau also refers to Kendall tau rank correlation coefficient.In the above case, the Kendall's Tau between

R

and

R'

is

\tau(\vecR,\vecR')=

Ns(r
{2\sum
i-r

j,

')\over
r
j

N(N-1)},

wheres(a,b)= \begin{cases} 1,&ifsign(a)=sign(b)\\ -1,&o.w. \end{cases}

Notes and References

  1. Bing Li; Rong Xiao; Zhiwei Li; Rui Cai; Bao-Liang Lu; Lei Zhang; "Rank-SIFT: Learning to rank repeatable local interest points", Computer Vision and Pattern Recognition (CVPR), 2011
  2. Joachims, T. (2003), "Optimizing Search Engines using Clickthrough Data", Proceedings of the ACM Conference on Knowledge Discovery and Data Mining
  3. Toews, M.; Wells, W."SIFT-Rank: Ordinal Description for Invariant Feature Correspondence", Computer Vision and Pattern Recognition, 2009.