Rank SIFT algorithm is the revised SIFT (Scale-invariant feature transform) algorithm which uses ranking techniques to improve the performance of the SIFT algorithm. In fact, ranking techniques can be used in key point localization or descriptor generation of the original SIFT algorithm.
Ranking techniques can be used to keep certain number of key points which are detected by SIFT detector.[1]
Suppose
\left\{Im,m=0,1,...M\right\}
p
p
R(p)
p
R(p\inI0)=\summ
I(min | |
q\inIm |
{\lVertHm(p)-q\rVert}2<\epsilon),
where
I(.)
Hm
I0
Im
\epsilon
Suppose
xi
pi
xi
pi
Xfeature=\left\{\vecx1,\vecx2,...\right\}
\begin{array}{lcl} minimize:V(\vecw)={1\over2}\vecw ⋅ \vecw\\ s.t.\ \begin{array}{lcl}\forall \vecxi and \vecxj\inXfeature,\\ \vecwT(\vecxi-\vecxj)\geqq1 if R(pi\inI0)>R(pj\inI0). \end{array} \end{array}
The obtained optimal
\vecw*
Ranking techniques also can be used to generate the key point descriptor.[3]
Suppose
{\vecX}=\left\{x1,...,xN\right\}
{R}=\left\{r1,...rN\right\}
xi
X
ri
ri=\left\vert\left\{xk:xk\geqqxi\right\}\right\vert.
After transforming original feature vector
\vecX
\vecR
The Spearman correlation coefficient also refers to Spearman's rank correlation coefficient.For two ordinal descriptors
\vecR
\vecR'
\rho(\vecR,\vecR')=1-
N(r | |
{6\sum | |
i-r |
') | |
i |
2\overN(N2-1)}
The Kendall's Tau also refers to Kendall tau rank correlation coefficient.In the above case, the Kendall's Tau between
R
R'
\tau(\vecR,\vecR')=
Ns(r | |
{2\sum | |
i-r |
j,
')\over | |
r | |
j |
N(N-1)},
where s(a,b)= \begin{cases} 1,&ifsign(a)=sign(b)\\ -1,&o.w. \end{cases}