In mathematics, Racah polynomials are orthogonal polynomials named after Giulio Racah, as their orthogonality relations are equivalent to his orthogonality relations for Racah coefficients.
The Racah polynomials were first defined by and are given by
pn(x(x+\gamma+\delta+1))={}4F3\left[\begin{matrix}-n&n+\alpha+\beta+1&-x&x+\gamma+\delta+1\\ \alpha+1&\gamma+1&\beta+\delta+1\ \end{matrix};1\right].
N\operatorname{R} | |
\sum | |
n(x;\alpha,\beta,\gamma,\delta) |
\operatorname{R} | ||||
|
\omegay=hn\operatorname{\delta}n,m,
when
\alpha+1=-N
where
\operatorname{R}
x=y(y+\gamma+\delta+1),
\operatorname{\delta}n,m
\omega | ||||
|
,
and
h | ||||
|
(n+\alpha+\beta+1)nn! | |
(\alpha+\beta+2)2n |
(\alpha+\delta-\gamma+1)n(\alpha-\delta+1)n(\beta+1)n | |
(\alpha+1)n(\beta+\delta+1)n(\gamma+1)n |
,
( ⋅ )n
\omega(x;\alpha,\beta,\gamma,\delta)\operatorname{R}n(λ(x);\alpha,\beta,\gamma,\delta)=(\gamma+\delta+1)
|
\omega(x;\alpha+n,\beta+n,\gamma+n,\delta),
where
\nabla
λ(x)=x(x+\gamma+\delta+1).
There are three generating functions for
x\in\{0,1,2,...,N\}
when
\beta+\delta+1=-N
\gamma+1=-N,
{}2F1(-x,-x+\alpha-\gamma-\delta;\alpha+1;t){}2F1(x+\beta+\delta+1,x+\gamma+1;\beta+1;t)
| ||||
=\sum | ||||
n=0 |
n, | |
\operatorname{R} | |
n(λ(x);\alpha,\beta,\gamma,\delta)t |
when
\alpha+1=-N
\gamma+1=-N,
{}2F1(-x,-x+\beta-\gamma;\beta+\delta+1;t){}2F1(x+\alpha+1,x+\gamma+1;\alpha-\delta+1;t)
| ||||
=\sum | ||||
n=0 |
n, | |
\operatorname{R} | |
n(λ(x);\alpha,\beta,\gamma,\delta)t |
when
\alpha+1=-N
\beta+\delta+1=-N,
{}2F1(-x,-x-\delta;\gamma+1;t){}2F1(x+\alpha+1;x+\beta+\gamma+1;\alpha+\beta-\gamma+1;t)
| ||||
=\sum | ||||
n=0 |
n. | |
\operatorname{R} | |
n(λ(x);\alpha,\beta,\gamma,\delta)t |
When
\alpha=a+b-1,\beta=c+d-1,\gamma=a+d-1,\delta=a-d,x → -a+ix,
2;a,b,c,d)}{(a+b) | |
\operatorname{R} | |
n(a+c) |
n(a+d)n},
where
\operatorname{W}
introduced the q-Racah polynomials defined in terms of basic hypergeometric functions by
-x | |
p | |
n(q |
+qx+1cd;a,b,c,d;q)={}4\phi3\left[\begin{matrix}q-n&abqn+1&q-x&qx+1cd\\ aq&bdq&cq\ \end{matrix};q;q\right].
Wn(x;a,b,c,N;q)={}4\phi3\left[\begin{matrix}q-n&abqn+1&q-x&cqx-n\\ aq&bcq&q-N\ \end{matrix};q;q\right].