No-deleting theorem explained

In physics, the no-deleting theorem of quantum information theory is a no-go theorem which states that, in general, given two copies of some arbitrary quantum state, it is impossible to delete one of the copies. It is a time-reversed dual to the no-cloning theorem,[1] [2] which states that arbitrary states cannot be copied. It was proved by Arun K. Pati and Samuel L. Braunstein.[3] Intuitively, it is because information is conserved under unitary evolution.[4]

This theorem seems remarkable, because, in many senses, quantum states are fragile; the theorem asserts that, in a particular case, they are also robust.

The no-deleting theorem, together with the no-cloning theorem, underpin the interpretation of quantum mechanics in terms of category theory, and, in particular, as a dagger symmetric monoidal category.[5] [6] This formulation, known as categorical quantum mechanics, in turn allows a connection to be made from quantum mechanics to linear logic as the logic of quantum information theory (in exact analogy to classical logic being founded on Cartesian closed categories).

Overview

Suppose that there are two copies of an unknown quantum state. A pertinent question in this context is to ask if it is possible, given two identical copies, to delete one of them using quantum mechanical operations? It turns out that one cannot. The no-deleting theorem is a consequence of linearity of quantum mechanics. Like the no-cloning theorem this has important implications in quantum computing, quantum information theory and quantum mechanics in general.

The process of quantum deleting takes two copies of an arbitrary, unknown quantum state at the input port and outputs a blank state along with the original. Mathematically, this can be described by:

U|\psi\rangleA|\psi\rangleB|A\rangleC=|\psi\rangleA|0\rangleB|A'\rangleC

where

U

is a unitary operator,

|\psi\rangleA

is the unknown quantum state,

|0\rangleB

is the blank state,

|A\rangleC

is the initial state of the deleting machine and

|A'\rangleC

is the final state of the machine.

|00\rangle

and

|11\rangle

then we can transform to

|00\rangle

and

|10\rangle

. In this case we have deleted the second copy. However, it follows from linearity of quantum theory that there is no

U

that can perform the deleting operation for any arbitrary state

|\psi\rangle

.

Formal statement

Given three Hilbert spaces for systems

A,B,C

, such that the Hilbert spaces for systems

A,B

are identical.

If

U

is a unitary transformation, and

|A\rangleC

is an ancilla state, such that U |\psi\rangle_A |\psi\rangle_B |A\rangle_C = |\psi\rangle_A |0\rangle_B |A_\psi\rangle_C, \quad \forall | \psi \rangle where the final state of the ancilla

|A\psi\rangleC

may depend on

|\psi\rangle

, then

U

is a swapping operation, in the sense that the map

|\psi\rangleA\mapsto|A\psi\rangleC

is an isometric embedding.

Proof

The theorem holds for quantum states in a Hilbert space of any dimension. For simplicity, consider the deleting transformation for two identical qubits. If two qubits are in orthogonal states, then deletion requires that

|0\rangleA|0\rangleB|A\rangleC|0\rangleA|0\rangleB|A0\rangleC

,

|1\rangleA|1\rangleB|A\rangleC|1\rangleA|0\rangleB|A1\rangleC

.

Let

|\psi\rangle=\alpha|0\rangle+\beta|1\rangle

be the state of an unknown qubit. If we have two copies of an unknown qubit, then by linearity of the deleting transformation we have

|\psi\rangleA|\psi\rangleB|A\rangleC=[\alpha2|0\rangleA|0\rangleB+\beta2|1\rangleA|1\rangleB+\alpha\beta(|0\rangleA|1\rangleB+|1\rangleA|0\rangleB)]|A\rangleC

   \alpha2|0\rangleA|0\rangleB|A0\rangleC+\beta2|1\rangleA|0\rangleB|A1\rangleC+{\sqrt2}\alpha\beta|\Phi\rangleABC.

In the above expression, the following transformation has been used:

1/{\sqrt2}(|0\rangleA|1\rangleB+|1\rangleA|0\rangleB)|A\rangleC|\Phi\rangleABC.

However, if we are able to delete a copy, then, at the output port of the deleting machine, the combined state should be

|\psi\rangleA|0\rangleB|A'\rangleC=(\alpha|0\rangleA|0\rangleB+\beta|1\rangleA|0\rangleB)|A'\rangleC

.

In general, these states are not identical and hence we can say that the machine fails to delete a copy. If we require that the final output states are same, then we will see that there is only one option:

|\Phi\rangle=1/{\sqrt2}(|0\rangleA|0\rangleB|A1\rangleC+|1\rangleA|0\rangleB|A0\rangleC),

and

|A'\rangleC=\alpha|A0\rangleC+\beta|A1\rangleC.

Since final state

|A'\rangle

of the ancilla is normalized for all values of

\alpha,\beta

it must be true that

|A0\rangleC

and

|A1\rangleC

are orthogonal. This means that the quantum information is simply in the final state of the ancilla. One can always obtain the unknown state from the final state of the ancilla using local operation on the ancilla Hilbert space. Thus, linearity of quantum theory does not allow an unknown quantum state to be deleted perfectly.

Consequence

See also

Notes and References

  1. W.K. Wootters and W.H. Zurek, "A Single Quantum Cannot be Cloned", Nature 299 (1982), p802.
  2. D. Dieks, "Communication by EPR devices", Physics Letters A, vol. 92(6) (1982), p271.
  3. A. K. Pati and S. L. Braunstein, "Impossibility of Deleting an Unknown Quantum State", Nature 404 (2000), p164.
  4. Horodecki . Michał . Horodecki . Ryszard . Sen(De) . Aditi . Sen . Ujjwal . 2005-12-01 . Common Origin of No-Cloning and No-Deleting Principles Conservation of Information . Foundations of Physics . en . 35 . 12 . 2041–2049 . 10.1007/s10701-005-8661-4 . 1572-9516. quant-ph/0407038 . 2005FoPh...35.2041H .
  5. John Baez, Physics, Topology, Logic and Computation: A Rosetta Stone (2009)
  6. Bob Coecke, Quantum Picturalism, (2009) ArXiv 0908.1787
  7. http://phys.org/news/2011-03-quantum-no-hiding-theorem-experimentally.html Quantum no-hiding theorem experimentally confirmed for first time. Mar 07, 2011 by Lisa Zyga