Quantum Fisher information explained
The quantum Fisher information is a central quantity in quantum metrology and is the quantum analogue of the classical Fisher information.[1] [2] [3] [4] [5] It is one of the central quantities used to qualify the utility of an input state, especially in Mach–Zehnder (or, equivalently, Ramsey) interferometer-based phase or parameter estimation.[6] It is shown that the quantum Fisher information can also be a sensitive probe of a quantum phase transition (e.g. recognizing the superradiant quantum phase transition in the Dicke model). The quantum Fisher information
of a
state
with respect to the observable
is defined as
F\rm[\varrho,A]=2\sumk,l
\vert\langlek\vertA\vertl\rangle\vert2,
where
and
are the eigenvalues and eigenvectors of the density matrix
respectively, and the summation goes over all
and
such that
.
When the observable generates a unitary transformation of the system with a parameter
from initial state
,
\varrho(\theta)=\exp(-iA\theta)\varrho0\exp(+iA\theta),
the quantum Fisher information constrains the achievable precision in statistical estimation of the parameter
via the
quantum Cramér–Rao bound as
where
is the number of independent repetitions.
It is often desirable to estimate the magnitude of an unknown parameter
that controls the strength of a system's Hamiltonian
with respect to a known observable
during a known dynamical time
. In this case, defining
, so that
, means estimates of
can be directly translated into estimates of
.
Connection with Fisher information
Classical Fisher information of measuring observable
on density matrix
is defined as
| \partialp(b|\theta) |
\partial\theta |
\right)2
, where
p(b|\theta)=\langleb\vert\varrho(\theta)\vertb\rangle
is the probability of obtaining outcome
when measuring observable
on the transformed density matrix
.
is the eigenvalue corresponding to eigenvector
of observable
.
Quantum Fisher information is the supremum of the classical Fisher information over all such observables,[7]
F\rm[\varrho,A]=\supBF[B,\theta].
Relation to the symmetric logarithmic derivative
The quantum Fisher information equals the expectation value of
, where
is the
symmetric logarithmic derivativeEquivalent expressions
For a unitary encoding operation
\varrho(\theta)=\exp(-iA\theta)\varrho0\exp(+iA\theta),
, the quantum Fisher information can be computed as an integral,
[8] F\rm[\varrho,A]=
| inftytr\left(\exp(-\rho |
-2\int | |
| 0 |
t)[\varrho0,A]\exp(-\rho0t)[\varrho0,A]\right) dt,
where
on the right hand side denotes commutator.It can be also expressed in terms of
Kronecker product and
vectorization,
[9] F\rm[\varrho,A]=
{\rmI}+{\rm
vec([\varrho0,A]),
where
denotes
complex conjugate, and
denotes
conjugate transpose. This formula holds for invertible density matrices. For non-invertible density matrices, the inverse above is substituted by the
Moore-Penrose pseudoinverse. Alternatively, one can compute the quantum Fisher information for invertible state
\rho\nu=(1-\nu)\rho0+\nu\pi
, where
is any full-rank density matrix, and then perform the limit
to obtain the quantum Fisher information for
. Density matrix
can be, for example,
in a finite-dimensional system, or a thermal state in infinite dimensional systems.
Generalization and relations to Bures metric and quantum fidelity
For any differentiable parametrization of the density matrix
\varrho(\boldsymbol{\theta})
by a vector of parameters
\boldsymbol{\theta}=(\theta1,...,\thetan)
, the quantum Fisher information matrix is defined as
[\varrho(\boldsymbol{\theta})]=2\sumk,l
k\vert\partiali\varrho\vertl\rangle\langlel\vert\partialj\varrho\vertk\rangle)}{λk+λl},
where
denotes partial derivative with respect to parameter
. The formula also holds without taking the real part
, because the imaginary part leads to an antisymmetric contribution that disappears under the sum. Note that all eigenvalues
and eigenvectors
of the density matrix potentially depend on the vector of parameters
.
This definition is identical to four times the Bures metric, up to singular points where the rank of the density matrix changes (those are the points at which
suddenly becomes zero.) Through this relation, it also connects with
quantum fidelity F(\varrho,\sigma)=\left(tr\left[\sqrt{\sqrt{\varrho}\sigma\sqrt{\varrho}}\right]\right)2
of two infinitesimally close states,
[10] F(\varrho\boldsymbol{\theta
},\varrho_)=1-\frac\sum_\Big(F_^[\varrho(\boldsymbol{\theta})]+2\!\!\sum_\!\!\partial_i\partial_j\lambda_k\Big)d\theta_i d\theta_j+\mathcal(d\theta^3),where the inner sum goes over all
at which eigenvalues
λk(\boldsymbol{\theta})=0
. The extra term (which is however zero in most applications) can be avoided by taking a symmetric expansion of fidelity,
[11] F\left(\varrho\boldsymbol{\theta-d\boldsymbol{\theta}/2},\varrho\boldsymbol{\theta+d\boldsymbol{\theta}/2}\right)=1-
\sumi,j
[\varrho(\boldsymbol{\theta})]d\thetai
| 3).
|
d\theta | |
| j+l{O}(d\theta |
For
and unitary encoding, the quantum Fisher information matrix reduces to the original definition.
Quantum Fisher information matrix is a part of a wider family of quantum statistical distances.[12]
Relation to fidelity susceptibility
Assuming that
\vert\psi0(\theta)\rangle
is a ground state of a parameter-dependent non-degenerate Hamiltonian
, four times the quantum Fisher information of this state is called fidelity susceptibility, and denoted
[13] \chiF=4FQ(\vert\psi0(\theta)\rangle).
Fidelity susceptibility measures the sensitivity of the ground state to the parameter, and its divergence indicates a quantum phase transition. This is because of the aforementioned connection with fidelity: a diverging quantum Fisher information means that
\vert\psi0(\theta)\rangle
and
\vert\psi0(\theta+d\theta)\rangle
are orthogonal to each other, for any infinitesimal change in parameter
, and thus are said to undergo a phase-transition at point
.
Convexity properties
The quantum Fisher information equals four times the variance for pure states
F\rm[\vert\Psi\rangle,H]=4(\Delta
.
For mixed states, when the probabilities are parameter independent, i.e., when
, the quantum Fisher information is convex:
F\rm[p\varrho1(\theta)+(1-p)\varrho2(\theta),H]\lepF\rm[\varrho1(\theta),H]+(1-p)F\rm[\varrho2(\theta),H].
The quantum Fisher information is the largest function that is convex and that equals four times the variance for pure states.That is, it equals four times the convex roof of the variance[14] [15]
F\rm[\varrho,H]=4
inf | |
| \{pk,\vert\Psik\rangle\ |
} \sum_k p_k (\Delta H)^2_,
where the infimum is over all decompositions of the density matrix
\varrho=\sumkpk\vert\Psik\rangle\langle\Psik\vert.
Note that
are not necessarily orthogonal to each other. The above optimization can be rewritten as an optimization over the two-copy space as
[16] FQ[\varrho,H]=
min
2{\rmTr}[(H ⊗ {\rmIdentity}-{\rmIdentity} ⊗
],
such that
is a symmetric
separable state and
{\rmTr}1(\varrho12)={\rmTr}2(\varrho12)=\varrho.
Later the above statement has been proved even for the case of a minimization over general (not necessarily symmetric) separable states.
[17] When the probabilities are
-dependent, an extended-convexity relation has been proved:
[18] F\rm[\sumipi(\theta)\varrhoi(\theta)]\le\sumipi(\theta)F\rm[\varrhoi(\theta)]+F\rm[\{pi(\theta)\}],
where
F\rm[\{pi(\theta)\}]=\sumi
is the classical Fisher information associated to the probabilities contributing to the convex decomposition. The first term, in the right hand side of the above inequality, can be considered as the average quantum Fisher information of the density matrices in the convex decomposition.
Inequalities for composite systems
We need to understand the behavior of quantum Fisher information in composite system in order to study quantum metrology of many-particle systems.[19] For product states,
F\rm[\varrho1 ⊗ \varrho2,H1 ⊗ {\rmIdentity}+{\rmIdentity} ⊗ H2]=
F\rm[\varrho1,H1]+F\rm[\varrho2,H2]
holds.
For the reduced state, we have
F\rm[\varrho12,H1 ⊗ {\rmIdentity}2]\geF\rm[\varrho1,H1],
where
\varrho1={\rmTr}2(\varrho12)
.
Relation to entanglement
There are strong links between quantum metrology and quantum information science. For a multiparticle system of
spin-1/2 particles
[20]
holds for separable states, where
and
is a single particle angular momentum component. The maximum for general quantum states is given by
,
F\rm[\varrho,Jz]\lesk2+r2
holds, where
is the largest integer smaller than or equal to
and
is the remainder from dividing
by
. Hence, a higher and higher levels of multipartite entanglement is needed to achieve a better and better accuracy in parameter estimation.
[21] [22] It is possible to obtain a weaker but simpler bound
[23]
Hence, a lower bound on the entanglement depth is obtained as
A related concept is the quantum metrological gain, which for a given Hamiltonian is defined as the ratio of the quantum Fisher information of a state and the maximum of the quantum Fisher information for the same Hamiltonian for separable states
where the Hamiltonian is
and
acts on the
nth spin. The metrological gain is defined by an optimization over all local Hamiltonians as
g(\varrho)=maxlHglH(\varrho).
Measuring the Fisher information
The error propagation formula gives a lower bound on the quantum Fisher information
,where
is an operator.This formula can be used to put a lower on the quantum Fisher information from experimental results.
[24] If
equals the symmetric logarithmic derivative then the inequality is saturated.
[25] For the case of unitary dynamics, the quantum Fisher information is the convex roof of the variance. Based on that, one can obtain lower bounds on it, based on some given operator expectation values using semidefinite programming. The approach considers an optimizaton on the two-copy space.[26]
There are numerical methods that provide an optimal lower bound for the quantum Fisher information based on the expectation values for some operators, using the theory of Legendre transforms and not semidefinite programming.[27] In some cases, the bounds can even be obtained analytically. For instance, for an
-qubit
Greenberger-Horne-Zeilinger (GHZ) state
where for the fidelity with respect to the GHZ state
F\rm={\rmTr}(\varrho|{\rmGHZ}\rangle\langle{\rmGHZ}|)\ge1/2
holds, otherwise the optimal lower bound is zero.
So far, we discussed bounding the quantum Fisher information for a unitary dynamics. It is also possible to bound the quantum Fisher information for the more general, non-unitary dynamics.[28] The approach is based on the relation between the fidelity and the quantum Fisher information and that the fidelity can be computed based on semidefinite programming.
For systems in thermal equibirum, the quantum Fisher information can be obtained from the dynamic susceptibility.[29]
Relation to the Wigner–Yanase skew information
The Wigner–Yanase skew information is defined as [30]
I(\varrho,H)={\rmTr}(H2\varrho)-{\rmTr}(H\sqrt{\varrho}H\sqrt{\varrho}).
It follows that
is convex in
For the quantum Fisher information and the Wigner–Yanase skew information, the inequality
F\rm[\varrho,H]\ge4I(\varrho,H)
holds, where there is an equality for pure states.
Relation to the variance
For any decomposition of the density matrix given by
and
the relation
(\DeltaH)2\ge\sumkpk(\Delta
\ge
F\rm[\varrho,H]
holds, where both inequalities are tight. That is, there is a decomposition for which the second inequality is saturated, which is the same as stating that the quantum Fisher information is the convex roof of the variance over four, discussed above. There is also a decomposition for which the first inequality is saturated, which means thatthe variance is its own concave roof
(\DeltaH)2=
\sup | |
| \{pk,\vert\Psik\rangle\ |
} \sum_k p_k (\Delta H)^2_.
Uncertainty relations with the quantum Fisher information and the variance
Knowing that the quantum Fisher information is the convex roof of the variance times four, we obtain the relation [31] which is stronger than the Heisenberg uncertainty relation. For a particle of spin-
the following uncertainty relation holds
where
are angular momentum components. The relation can be strengthened as
[32] [33] Notes and References
- Book: Helstrom . C . Quantum detection and estimation theory . 1976 . Academic Press . 0123400503.
- Book: Holevo . Alexander S . Probabilistic and statistical aspects of quantum theory . 1982 . Scuola Normale Superiore . 978-88-7642-378-9 . 2nd English.
- Braunstein . Samuel L. . Caves . Carlton M. . Carlton Caves . Statistical distance and the geometry of quantum states . . 72 . 22 . 1994-05-30 . 0031-9007 . 10.1103/physrevlett.72.3439 . 10056200 . 3439–3443. 1994PhRvL..72.3439B .
- Braunstein . Samuel L. . Caves . Carlton M. . Milburn . G.J. . Carlton Caves . Generalized Uncertainty Relations: Theory, Examples, and Lorentz Invariance . . April 1996 . 247 . 1 . 135–173 . 10.1006/aphy.1996.0040. 1996AnPhy.247..135B . quant-ph/9507004 . 358923 .
- Paris . Matteo G. A. . Quantum Estimation for Quantum Technology. . 21 November 2011 . 07 . supp01 . 125–137 . 10.1142/S0219749909004839. 0804.2981 . 2365312 .
- Wang . Teng-Long . Wu . Ling-Na . Yang . Wen . Jin . Guang-Ri . Lambert . Neill . Nori . Franco . 2014-06-17 . Quantum Fisher information as a signature of the superradiant quantum phase transition . New Journal of Physics . 16 . 6 . 063039 . 10.1088/1367-2630/16/6/063039 . 1367-2630. 1312.1426 . 2014NJPh...16f3039W .
- Paris . Matteo G. A. . Quantum estimation for quantum technology . International Journal of Quantum Information . 07 . supp01 . 2009 . 0219-7499 . 10.1142/s0219749909004839 . 125–137. 0804.2981 . 2365312 .
- PARIS . MATTEO G. A. . Quantum estimation for quantum technology . International Journal of Quantum Information . 07 . supp01 . 2009 . 0219-7499 . 10.1142/s0219749909004839 . 125–137. 0804.2981 . 2365312 .
- Šafránek . Dominik . Simple expression for the quantum Fisher information matrix . Physical Review A . 97 . 4 . 2018-04-12 . 2469-9926 . 10.1103/physreva.97.042322 . 042322. 1801.00945 . 2018PhRvA..97d2322S .
- Šafránek . Dominik . Discontinuities of the quantum Fisher information and the Bures metric . Physical Review A . 95 . 5 . 2017-05-11 . 2469-9926 . 10.1103/physreva.95.052320 . 052320. 1612.04581 . 2017PhRvA..95e2320S . 118962619 .
- Zhou . Sisi. Jiang . Liang . An exact correspondence between the quantum Fisher information and the Bures metric . 18 Oct 2019 . 1910.08473. quant-ph .
- Jarzyna . M. . Geometric Approach to Quantum Statistical Inference . Kołodyński . J. . IEEE Journal on Selected Areas in Information Theory . 18 August 2020 . 1 . 2 . 367–386 . 2641-8770 . 10.1109/JSAIT.2020.3017469. 2008.09129 . 221245983 .
- Gu . S.-J. . Fidelity approach to quantum phase transitions . International Journal of Modern Physics B . 2010 . 24 . 23 . 4371–4458 . 10.1142/S0217979210056335. 0811.3127 . 2010IJMPB..24.4371G . 118375103 .
- Tóth . Géza . Petz . Dénes . Extremal properties of the variance and the quantum Fisher information . Physical Review A . 20 March 2013 . 87 . 3 . 032324 . 10.1103/PhysRevA.87.032324. 2013PhRvA..87c2324T . 1109.2831 . 55088553 .
- Yu . Sixia . Quantum Fisher Information as the Convex Roof of Variance . 2013 . 1302.5311. quant-ph .
- Tóth . Géza . Moroder . Tobias . Gühne . Otfried . Evaluating Convex Roof Entanglement Measures . Physical Review Letters . 21 April 2015 . 114 . 16 . 160501 . 10.1103/PhysRevLett.114.160501. 25955038 . 1409.3806 . 2015PhRvL.114p0501T . 39578286 .
- Tóth . Géza . Pitrik . József . Quantum Wasserstein distance based on an optimization over separable states . Quantum . 16 October 2023 . 7 . 1143 . 10.22331/q-2023-10-16-1143. 2209.09925. 2023Quant...7.1143T . 252408568 .
- Alipour. S.. Rezakhani. A. T.. 2015-04-07. Extended convexity of quantum Fisher information in quantum metrology. Physical Review A. en. 91. 4. 042104. 1403.8033. 10.1103/PhysRevA.91.042104. 2015PhRvA..91d2104A. 124094775 . 1050-2947.
- Tóth . Géza . Apellaniz . Iagoba . Quantum metrology from a quantum information science perspective . Journal of Physics A: Mathematical and Theoretical . 24 October 2014 . 47 . 42 . 424006 . 10.1088/1751-8113/47/42/424006. 2014JPhA...47P4006T . 1405.4878 . 119261375 .
- Pezzé . Luca . Smerzi . Augusto . Entanglement, Nonlinear Dynamics, and the Heisenberg Limit . Physical Review Letters . 10 March 2009 . 102 . 10 . 100401 . 10.1103/PhysRevLett.102.100401. 19392092 . 2009PhRvL.102j0401P . 0711.4840 . 13095638 .
- Hyllus. Philipp. 2012. Fisher information and multiparticle entanglement. Physical Review A. 85. 2. 022321. 10.1103/physreva.85.022321. 1006.4366. 2012PhRvA..85b2321H. 118652590.
- Tóth. Géza. 2012. Multipartite entanglement and high-precision metrology. Physical Review A. 85. 2. 022322. 10.1103/physreva.85.022322. 1006.4368. 2012PhRvA..85b2322T. 119110009.
- Book: Tóth . Géza . Entanglement detection and quantum metrology in quantum optical systems . 2021 . Doctoral Dissertation submitted to the Hungarian Academy of Sciences . Budapest . 68 .
- Lücke . B. . Scherer . M. . Kruse . J. . Pezzé . L. . Deuretzbacher . F. . Hyllus . P. . Topic . O. . Peise . J. . Ertmer . W. . Arlt . J. . Santos . L. . Smerzi . A. . Klempt . C. . Twin Matter Waves for Interferometry Beyond the Classical Limit . Science . 11 November 2011 . 334 . 6057 . 773–776 . 10.1126/science.1208798. 21998255 . 1204.4102 . 2011Sci...334..773L .
- Escher . B. M. . Quantum Noise-to-Sensibility Ratio . 2012 . quant-ph . 1212.2533.
- Tóth . Géza . Moroder . Tobias . Gühne . Otfried . Evaluating Convex Roof Entanglement Measures . Physical Review Letters . 21 April 2015 . 114 . 16 . 160501 . 10.1103/PhysRevLett.114.160501. 25955038 . 1409.3806 . 2015PhRvL.114p0501T .
- Apellaniz . Iagoba . Kleinmann . Matthias . Gühne . Otfried . Tóth . Géza . Optimal witnessing of the quantum Fisher information with few measurements . Physical Review A . 28 March 2017 . 95 . 3 . 032330 . 10.1103/PhysRevA.95.032330. 1511.05203 . 2017PhRvA..95c2330A .
- Müller-Rigat . Guillem . Srivastava . Anubhav Kumar . Kurdziałek . Stanisław . Rajchel-Mieldzioć . Grzegorz . Lewenstein . Maciej . Frérot . Irénée . Certifying the quantum Fisher information from a given set of mean values: a semidefinite programming approach . Quantum . 24 October 2023 . 7 . 1152 . 10.22331/q-2023-10-24-1152. 2306.12711 . 2023Quant...7.1152M .
- Hauke . Philipp . Heyl . Markus . Tagliacozzo . Luca . Zoller . Peter . Measuring multipartite entanglement through dynamic susceptibilities . Nature Physics . August 2016 . 12 . 8 . 778–782 . 10.1038/nphys3700. 1509.01739 . 2016NatPh..12..778H .
- Wigner . E. P. . Information Contents of Distributions . Yanase . M. M. . Proceedings of the National Academy of Sciences . 1 June 1963 . 49 . 6 . 910–918 . 300031 . 10.1073/pnas.49.6.910. 16591109 . 1963PNAS...49..910W . free .
- Fröwis . Florian . Schmied . Roman . Gisin . Nicolas . Tighter quantum uncertainty relations following from a general probabilistic bound . Physical Review A . 2 July 2015 . 92 . 1 . 012102 . 10.1103/PhysRevA.92.012102. 1409.4440 . 2015PhRvA..92a2102F . 58912643 .
- Tóth . Géza . Fröwis . Florian . Uncertainty relations with the variance and the quantum Fisher information based on convex decompositions of density matrices . Physical Review Research . 31 January 2022 . 4 . 1 . 013075 . 10.1103/PhysRevResearch.4.013075. 2109.06893 . 2022PhRvR...4a3075T . 237513549 .
- Chiew . Shao-Hen . Gessner . Manuel . Improving sum uncertainty relations with the quantum Fisher information . Physical Review Research . 31 January 2022 . 4 . 1 . 013076 . 10.1103/PhysRevResearch.4.013076. 2109.06900 . 2022PhRvR...4a3076C . 237513883 .