QARS explained
Glutaminyl-tRNA synthetase is an enzyme that in humans is encoded by the QARS gene.[1] [2] [3]
Function
Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNA by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. In metazoans, 9 aminoacyl-tRNA synthetases specific for glutamine (gln), glutamic acid (glu), and 7 other amino acids are associated within a multienzyme complex. Although present in eukaryotes, glutaminyl-tRNA synthetase (QARS) is absent from many prokaryotes, mitochondria, and chloroplasts, in which Gln-tRNA(Gln) is formed by transamidation of the misacylated Glu-tRNA(Gln). Glutaminyl-tRNA synthetase belongs to the class-I aminoacyl-tRNA synthetase family. Almost all eukaryotic GlnRS enzymes possess a YqeY domain at the N-terminus, which affects affinity for the tRNA; in some bacterial species, such as Deinococcus radiodurans, YqeY is present as a C-terminal domain with similar function.[4]
Interactions
QARS has been shown to interact with RARS.[5]
Further reading
- Norcum MT . Structural analysis of the high molecular mass aminoacyl-tRNA synthetase complex. Effects of neutral salts and detergents . The Journal of Biological Chemistry . 266 . 23 . 15398–405 . Aug 1991 . 10.1016/S0021-9258(18)98629-1 . 1651330 . free .
- Maruyama K, Sugano S . Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides . Gene . 138 . 1–2 . 171–4 . Jan 1994 . 8125298 . 10.1016/0378-1119(94)90802-8 .
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S . Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library . Gene . 200 . 1–2 . 149–56 . Oct 1997 . 9373149 . 10.1016/S0378-1119(97)00411-3 .
- Quevillon S, Robinson JC, Berthonneau E, Siatecka M, Mirande M . Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein . Journal of Molecular Biology . 285 . 1 . 183–95 . Jan 1999 . 9878398 . 10.1006/jmbi.1998.2316 .
- Ko YG, Kang YS, Kim EK, Park SG, Kim S . Nucleolar localization of human methionyl-tRNA synthetase and its role in ribosomal RNA synthesis . The Journal of Cell Biology . 149 . 3 . 567–74 . May 2000 . 10791971 . 2174846 . 10.1083/jcb.149.3.567 .
- Kim T, Park SG, Kim JE, Seol W, Ko YG, Kim S . Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex . The Journal of Biological Chemistry . 275 . 28 . 21768–72 . Jul 2000 . 10801842 . 10.1074/jbc.M002404200 . free .
- Kang J, Kim T, Ko YG, Rho SB, Park SG, Kim MJ, Kwon HJ, Kim S . Heat shock protein 90 mediates protein-protein interactions between human aminoacyl-tRNA synthetases . The Journal of Biological Chemistry . 275 . 41 . 31682–8 . Oct 2000 . 10913161 . 10.1074/jbc.M909965199 . free .
- Ko YG, Kim EY, Kim T, Park H, Park HS, Choi EJ, Kim S . Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1 . The Journal of Biological Chemistry . 276 . 8 . 6030–6 . Feb 2001 . 11096076 . 10.1074/jbc.M006189200 . free .
- Lehner B, Semple JI, Brown SE, Counsell D, Campbell RD, Sanderson CM . Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region . Genomics . 83 . 1 . 153–67 . Jan 2004 . 14667819 . 10.1016/S0888-7543(03)00235-0 .
- Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P, Gauthier JM . Functional proteomics mapping of a human signaling pathway . Genome Research . 14 . 7 . 1324–32 . Jul 2004 . 15231748 . 442148 . 10.1101/gr.2334104 .
- Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ . Immunoaffinity profiling of tyrosine phosphorylation in cancer cells . Nature Biotechnology . 23 . 1 . 94–101 . Jan 2005 . 15592455 . 10.1038/nbt1046 . 7200157 .
- Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M . Towards a proteome-scale map of the human protein-protein interaction network . Nature . 437 . 7062 . 1173–8 . Oct 2005 . 16189514 . 10.1038/nature04209 . 2005Natur.437.1173R . 4427026 .
Notes and References
- Lamour V, Quevillon S, Diriong S, N'Guyen VC, Lipinski M, Mirande M . Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer . Proceedings of the National Academy of Sciences of the United States of America . 91 . 18 . 8670–4 . Aug 1994 . 8078941 . 44668 . 10.1073/pnas.91.18.8670 . 1994PNAS...91.8670L . free .
- Durkin ME, Jäger AC, Khurana TS, Nielsen FC, Albrechtsen R, Wewer UM . Characterization of the human laminin beta2 chain locus (LAMB2): linkage to a gene containing a nonprocessed, transcribed LAMB2-like pseudogene (LAMB2L) and to the gene encoding glutaminyl tRNA synthetase (QARS) . Cytogenetics and Cell Genetics . 84 . 3–4 . 173–8 . July 1999 . 10393422 . 10.1159/000015249 . 36315977 .
- Web site: Entrez Gene: QARS glutaminyl-tRNA synthetase.
- Hadd A, Perona JJ . Coevolution of specificity determinants in eukaryotic glutamyl- and glutaminyl-tRNA synthetases . Journal of Molecular Biology . 426 . 21 . 3619–33 . Oct 2014 . 25149203 . 10.1016/j.jmb.2014.08.006 .
- Kim T, Park SG, Kim JE, Seol W, Ko YG, Kim S . Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex . The Journal of Biological Chemistry . 275 . 28 . 21768–72 . Jul 2000 . 10801842 . 10.1074/jbc.M002404200 . free .