A
n
n x 1
P
P-AP
The concept of productive matrix was developed by the economist Wassily Leontief (Nobel Prize in Economics in 1973) in order to model and analyze the relations between the different sectors of an economy.[1] The interdependency linkages between the latter can be examined by the input-output model with empirical data.
The matrix
A\inMn,n(\R)
A\geqslant0
\existsP\inMn,1(\R),P>0
P-AP>0
Here
Mr,c(\R)
>0
\geqslant0
The following properties are proven e.g. in the textbook (Michel 1984).[2]
TheoremA nonnegative matrix
A\inMn,n(\R)
In-A
In
n x n
Proof
"If" :
Let
In-A
Let
U\inMn,1(\R)
U>0
Then the matrix
P=(In-A)-1U
Moreover,
P-AP=(In-A)P=(In-A)(In-A)-1U=U>0
Therefore
A
Let
A
P>0
V=P-AP>0
The proof proceeds by reductio ad absurdum.
First, assume for contradiction
In-A
The endomorphism canonically associated with
In-A
Thus some non-zero column matrix
Z\inMn,1(\R)
(In-A)Z=0
The matrix
-Z
Z
Z
Hence
c=\supi
zi | |
pi |
k\in[|1,n|]
By definition of
V
Z
cvk=c(pk-
n | |
\sum | |
i=1 |
akipi)=cpk-
n | |
\sum | |
i=1 |
akicpi
cpk=zk=
n | |
\sum | |
i=1 |
akizi
Z=AZ
Thus
cvk=
n | |
\sum | |
i=1 |
aki(zi-cpi)\leq 0
zi\leqcpi
c
This contradicts
c>0
vk>0
In-A
Second, assume for contradiction
In-A
Hence
\existsX\inMn,1(\R),X\geqslant0
Y=(In-A)-1X
Then
c=\supi-
yi | |
pi |
k\in[|1,n|]
By definition of
V
X
cvk=c(pk-
n | |
\sum | |
i=1 |
akipi)=-yk
n | |
-\sum | |
i=1 |
akicpi
xk=yk-
n | |
\sum | |
i=1 |
akiyi
X=(In-A)Y
cvk+xk=-
n | |
\sum | |
i=1 |
aki(cpi+yi)\geqslant0
-yi\leqslantcpi
c
Thus
xk\leq-cvk<0
X\geqslant0
Therefore
(In-A)-1
PropositionThe transpose of a productive matrix is productive.
Proof
Let
A\inMn,n(\R)
Then
(In-A)-1
Yet
(In-AT)-1=((In-A)T)-1=((In-A)-1)T
Hence
(In-AT)
Therefore
AT
See main article: article and Input-output analysis.
With a matrix approach of the input-output model, the consumption matrix is productive if it is economically viable and if the latter and the demand vector are nonnegative.