In Bayesian inference, plate notation is a method of representing variables that repeat in a graphical model. Instead of drawing each repeated variable individually, a plate or rectangle is used to group variables into a subgraph that repeat together, and a number is drawn on the plate to represent the number of repetitions of the subgraph in the plate.[1] The assumptions are that the subgraph is duplicated that many times, the variables in the subgraph are indexed by the repetition number, and any links that cross a plate boundary are replicated once for each subgraph repetition.[2]
In this example, we consider Latent Dirichlet allocation, a Bayesian network that models how documents in a corpus are topically related. There are two variables not in any plate; α is the parameter of the uniform Dirichlet prior on the per-document topic distributions, and β is the parameter of the uniform Dirichlet prior on the per-topic word distribution.
The outermost plate represents all the variables related to a specific document, including
\thetai
Ni
zij
wij
The N in the corner represents the repetition of the variables in the inner plate
Nj
wij
wij
zij
A number of extensions have been created by various authors to express more information than simply the conditional relationships. However, few of these have become standard. Perhaps the most commonly used extension is to use rectangles in place of circles to indicate non-random variables—either parameters to be computed, hyperparameters given a fixed value (or computed through empirical Bayes), or variables whose values are computed deterministically from a random variable.
The diagram on the right shows a few more non-standard conventions used in some articles in Wikipedia (e.g. variational Bayes):
Plate notation has been implemented in various TeX/LaTeX drawing packages, but also as part of graphical user interfaces to Bayesian statistics programs such as BUGS and BayesiaLab and PyMC.