Petz recovery map explained

In quantum information theory, a mix of quantum mechanics and information theory, the Petz recovery map can be thought of a quantum analog of Bayes theorem. Proposed by Dénes Petz,[1] the Petz recovery map is a quantum channel associated with a given quantum channel and quantum state. This recovery map is designed in a manner that, when applied to an output state resulting from the given quantum channel acting on an input state, it enables the inference of the original input state. In essence, the Petz recovery map serves as a tool for reconstructing information about the initial quantum state from its transformed counterpart under the influence of the specified quantum channel.

The Petz recovery map finds applications in various domains, including quantum retrodiction,[2] quantum error correction,[3] and entanglement wedge reconstruction for black hole physics.[4] [5]

Definition

Suppose we have a quantum state which is described by a density operator

\sigma

and a quantum channel

l{E}

, the Petz recovery map is defined as

l{P}\sigma,l{E

}(\rho)=\sigma^\mathcal^(\mathcal(\sigma)^\rho \mathcal(\sigma)^)\sigma^.

Notice that

l{E}\dagger

is the Hilbert-Schmidt adjoint of

l{E}

.

The Petz map has been generalized in various ways in the field of quantum information theory.[6] [7]

Properties of the Petz recovery map

A crucial property of the Petz recovery map is its ability to function as a quantum channel in certain cases, making it an essential tool in quantum information theory.

  1. The Petz recovery map is a completely positive map, since (i) sandwiching by the positive semi-definite operator

l{E}(\sigma)-1/2()l{E}(\sigma)-1/2

is completely positive; (ii)

l{E}\dagger

is also completely positive when

l{E}

is completely positive; and (iii) sandwiching by the positive semi-definite operator

\sigma1/2()\sigma1/2

is completely positive.
  1. It's also clear that

l{P}\sigma,l{E

} is is trace non-increasing, since

\begin{aligned} \operatorname{Tr}\left[l{P}\sigma,

}(X)\right] & =\operatorname\left[\sigma^{\frac{1}{2}} \mathcal{E}^{\dagger}\left(\mathcal{E}(\sigma)^{-\frac{1}{2}} X \mathcal{E}(\sigma)^{-\frac{1}{2}}\right) \sigma^{\frac{1}{2}}\right] \\& =\operatorname\left[\sigma \mathcal{E}^{\dagger}\left(\mathcal{E}(\sigma)^{-\frac{1}{2}} X \mathcal{E}(\sigma)^{-\frac{1}{2}}\right)\right] \\& =\operatorname\left[\mathcal{E}(\sigma) \mathcal{E}(\sigma)^{-\frac{1}{2}} X \mathcal{E}(\sigma)^{-\frac{1}{2}}\right] \\& =\operatorname\left[\mathcal{E}(\sigma)^{-\frac{1}{2}} \mathcal{E}(\sigma) \mathcal{E}(\sigma)^{-\frac{1}{2}} X\right] \\& =\operatorname\left[\Pi_{\mathcal{E}(\sigma)} X\right] \\& \leq \operatorname[X]\end

From 1 and 2, when

l{E}(\sigma)

is invertible, the Petz recovery map

l{P}\sigma,l{E

} is a quantum channel, viz., a completely positive trace-preserving (CPTP) map.

Further reading

Notes and References

  1. Petz . Dénes . 1986-03-01 . Sufficient subalgebras and the relative entropy of states of a von Neumann algebra . Communications in Mathematical Physics . en . 105 . 1 . 123–131 . 10.1007/BF01212345 . 1986CMaPh.105..123P . 18836173 . 1432-0916.
  2. Leifer . M. S. . Spekkens . Robert W. . 2013-11-27 . Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference . Physical Review A . 88 . 5 . 052130 . 10.1103/PhysRevA.88.052130. 2013PhRvA..88e2130L . 43563970 . 1107.5849 .
  3. Furuya . Keiichiro . Lashkari . Nima . Ouseph . Shoy . 2022-01-27 . Real-space RG, error correction and Petz map . Journal of High Energy Physics . en . 2022 . 1 . 170 . 10.1007/JHEP01(2022)170 . 2022JHEP...01..170F . 1029-8479. free .
  4. Chen . Chi-Fang . Penington . Geoffrey . Salton . Grant . 2020-01-28 . Entanglement wedge reconstruction using the Petz map . Journal of High Energy Physics . en . 2020 . 1 . 168 . 10.1007/JHEP01(2020)168 . 1902.02844 . 2020JHEP...01..168C . 1029-8479.
  5. Cotler . Jordan . Hayden . Patrick . Penington . Geoffrey . Salton . Grant . Swingle . Brian . Walter . Michael . 2019-07-24 . Entanglement Wedge Reconstruction via Universal Recovery Channels . Physical Review X . 9 . 3 . 031011 . 10.1103/PhysRevX.9.031011. 2019PhRvX...9c1011C . 1704.05839 .
  6. Book: Universal recoverability in quantum information . 2024-01-03 . 2016 . 10.1109/ISIT.2016.7541748 . 18189775 . Junge . Marius . Renner . Renato . Sutter . David . Wilde . Mark M. . Winter . Andreas . 2494–2498 . 20.500.11850/120060 . 978-1-5090-1806-2 .
  7. Cree . Sam . Sorce . Jonathan . 2022-06-01 . Approximate Petz Recovery from the Geometry of Density Operators . Communications in Mathematical Physics . en . 392 . 3 . 907–919 . 10.1007/s00220-022-04357-2 . 2108.10893 . 2022CMaPh.392..907C . 237292763 . 1432-0916.