The gamma function is an important special function in mathematics. Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general. Other fractional arguments can be approximated through efficient infinite products, infinite series, and recurrence relations.
For positive integer arguments, the gamma function coincides with the factorial. That is,
\Gamma(n)=(n-1)!,
and hence
\begin{align} \Gamma(1)&=1,\\ \Gamma(2)&=1,\\ \Gamma(3)&=2,\\ \Gamma(4)&=6,\\ \Gamma(5)&=24, \end{align}
and so on. For non-positive integers, the gamma function is not defined.
For positive half-integers, the function values are given exactly by
\Gamma\left(\tfrac{n}{2}\right)=\sqrt\pi
(n-2)!! | |||||||
|
,
or equivalently, for non-negative integer values of :
\begin{align} \Gamma\left(\tfrac12+n\right)&=
(2n-1)!! | |
2n |
\sqrt{\pi}=
(2n)! | |
4nn! |
\sqrt{\pi}\\ \Gamma\left(\tfrac12-n\right)&=
(-2)n | |
(2n-1)!! |
\sqrt{\pi}=
(-4)nn! | |
(2n)! |
\sqrt{\pi}\end{align}
where denotes the double factorial. In particular,
\Gamma\left(\tfrac12\right) | =\sqrt{\pi} | ≈ 1.7724538509055160273, | ||
\Gamma\left(\tfrac32\right) | =\tfrac12\sqrt{\pi} | ≈ 0.8862269254527580137, | ||
\Gamma\left(\tfrac52\right) | =\tfrac34\sqrt{\pi} | ≈ 1.3293403881791370205, | ||
\Gamma\left(\tfrac72\right) | =\tfrac{15}8\sqrt{\pi} | ≈ 3.3233509704478425512, |
and by means of the reflection formula,
\Gamma\left(-\tfrac12\right) | =-2\sqrt{\pi} | ≈ -3.5449077018110320546, | ||
\Gamma\left(-\tfrac32\right) | =\tfrac43\sqrt{\pi} | ≈ 2.3632718012073547031, | ||
\Gamma\left(-\tfrac52\right) | =-\tfrac8{15}\sqrt{\pi} | ≈ -0.9453087204829418812, |
In analogy with the half-integer formula,
\begin{align} \Gamma\left(n+\tfrac13\right)&=\Gamma\left(\tfrac13\right)
(3n-2)!!! | |
3n |
\\ \Gamma\left(n+\tfrac14\right)&=\Gamma\left(\tfrac14\right)
(4n-3)!!!! | |
4n |
\\ \Gamma\left(n+\tfrac{1}{q}\right)&=\Gamma\left(\tfrac{1}{q}\right)
(qn-(q-1))!(q) | |
qn |
\\ \Gamma\left(n+\tfrac{p}{q}\right)&=\Gamma\left(\tfrac{p}{q}\right)
1 | |
qn |
\prod
n | |
k=1 |
(kq+p-q) \end{align}
where denotes the th multifactorial of . Numerically,
\Gamma\left(\tfrac13\right) ≈ 2.6789385347077476337
\Gamma\left(\tfrac14\right) ≈ 3.6256099082219083119
\Gamma\left(\tfrac15\right) ≈ 4.5908437119988030532
\Gamma\left(\tfrac16\right) ≈ 5.5663160017802352043
\Gamma\left(\tfrac17\right) ≈ 6.5480629402478244377
\Gamma\left(\tfrac18\right) ≈ 7.5339415987976119047
As
n
\Gamma\left(\tfrac1n\right)\simn-\gamma
where
\gamma
\sim
It is unknown whether these constants are transcendental in general, but and were shown to be transcendental by G. V. Chudnovsky. has also long been known to be transcendental, and Yuri Nesterenko proved in 1996 that,, and are algebraically independent.
For
n\geq2
\Gamma\left(\tfrac1n\right)
\Gamma\left(\tfrac2n\right)
The number
\Gamma\left(\tfrac14\right)
\Gamma\left(\tfrac14\right)=\sqrt{2\varpi\sqrt{2\pi}}
Borwein and Zucker have found that can be expressed algebraically in terms of,,,, and where is a complete elliptic integral of the first kind. This permits efficiently approximating the gamma function of rational arguments to high precision using quadratically convergent arithmetic–geometric mean iterations. For example:
\begin{align} \Gamma\left(\tfrac16\right)&=
| ||||
|
\right)2}{\sqrt[3]{2}}\\ \Gamma\left(\tfrac14\right)&=2\sqrt{K\left(\tfrac12\right)\sqrt{\pi}}\\ \Gamma\left(\tfrac13\right)&=
| ||||||||||
\right)\right)}}{\sqrt[12]{3}} |
\\ \Gamma\left(\tfrac{1}{8}\right)\Gamma\left(\tfrac{3}{8}\right)&=8\sqrt[4]{2}\sqrt{\left(\sqrt{2}-1\right)\pi}K\left(3-2\sqrt{2}\right)\\
| ||||||
|
&=
2\sqrt{\left(1+\sqrt{2 | K\left( | |
\right) |
1 | |
2 |
\right)}}{\sqrt[4]{\pi}} \end{align}
No similar relations are known for or other denominators.
In particular, where AGM is the arithmetic–geometric mean, we have[2]
\Gamma\left(\tfrac13\right)=
| |||||||||||||||||
|
| ||||
\left(2,\sqrt{2+\sqrt{3}}\right) |
\Gamma\left(\tfrac14\right)=\sqrt
| ||||||||||
\operatorname{AGM |
\left(\sqrt2,1\right)}
\Gamma\left(\tfrac16\right)=
| ||||||||||||||||||||||||
\operatorname{AGM |
| ||||
\left(1+\sqrt{3},\sqrt{8}\right) |
Other formulas include the infinite products
\Gamma\left(\tfrac14\right)=(2
infty | |
\pi) | |
k=1 |
\tanh\left(
\pik | |
2 |
\right)
and
\Gamma\left(\tfrac14\right)=A3
| ||||
e |
\sqrt{\pi}
infty | ||
2 | \left(1- | |
k=1 |
1 | |
2k |
k(-1)k | |
\right) |
where is the Glaisher–Kinkelin constant and is Catalan's constant.
The following two representations for were given by I. Mező
\sqrt{ | \pi\sqrt{e\pi |
and
\sqrt{ | \pi |
2 |
where and are two of the Jacobi theta functions.
There also exist a number of Malmsten integrals for certain values of the gamma function:[3]
infty | |
\int | |
1 |
lnlnt | |
1+t2 |
=
\pi4\left(2ln2 | |
+ |
3ln\pi-4\Gamma\left(\tfrac14\right)\right)
infty | |
\int | |
1 |
lnlnt | |
1+t+t2 |
=
\pi{6\sqrt3}\left(8ln2 | |
-3ln3 |
+8ln\pi-12\Gamma\left(\tfrac13\right)\right)
Some product identities include:
2 | |
\prod | |
r=1 |
\Gamma\left(\tfrac{r}{3}\right)=
2\pi | |
\sqrt3 |
≈ 3.6275987284684357012
3 | |
\prod | |
r=1 |
\Gamma\left(\tfrac{r}{4}\right)=\sqrt{2\pi3} ≈ 7.8748049728612098721
4 | |
\prod | |
r=1 |
\Gamma\left(\tfrac{r}{5}\right)=
4\pi2 | |
\sqrt5 |
≈ 17.6552850814935242483
5 | |
\prod | |
r=1 |
\Gamma\left(\tfrac{r}{6}\right)=4\sqrt{
\pi5 | |
3} |
≈ 40.3993191220037900785
6 | |
\prod | |
r=1 |
\Gamma\left(\tfrac{r}{7}\right)=
8\pi3 | |
\sqrt7 |
≈ 93.7541682035825037970
7 | |
\prod | |
r=1 |
\Gamma\left(\tfrac{r}{8}\right)=4\sqrt{\pi7} ≈ 219.8287780169572636207
In general:
n | |
\prod | |
r=1 |
\Gamma\left(\tfrac{r}{n+1}\right)=\sqrt{
(2\pi)n | |
n+1 |
From those products can be deduced other values, for example, from the former equations for
3 | |
\prod | |
r=1 |
\Gamma\left(\tfrac{r}{4}\right)
\Gamma\left(\tfrac{1}{4}\right)
\Gamma\left(\tfrac{2}{4}\right)
\Gamma\left(\tfrac{3}{4}\right)=\left(\tfrac{\pi}{2}\right)\tfrac{1{4}}{\operatorname{AGM}\left(\sqrt2,1\right)}\tfrac{1{2}}
Other rational relations include
\Gamma\left(\tfrac15\right)\Gamma\left(\tfrac{4 | |
15 |
\right)}{\Gamma\left(\tfrac13\right)\Gamma\left(\tfrac{2}{15}\right)}=
\sqrt{2 | +\sqrt{6- | ||
|
6 | |
\sqrt5 |
\Gamma\left(\tfrac{1 | |
20 |
\right)\Gamma\left(\tfrac{9}{20}\right)}{\Gamma\left(\tfrac{3}{20}\right)\Gamma\left(\tfrac{7}{20}\right)}=
\sqrt[4]{5 | |
\left(1+\sqrt{5}\right)}{2} |
| |||||||
|
=
\sqrt{1+\sqrt{5 | |
and many more relations for where the denominator d divides 24 or 60.[4]
Gamma quotients with algebraic values must be "poised" in the sense that the sum of arguments is the same (modulo 1) for the denominator and the numerator.
A more sophisticated example:
| \right)\Gamma\left( | |||||||||
|
1{2}\right)} | |
= |
| \sin\left( | |||||||||
\right) |
4\pi | |
21 |
\right)\sin\left(
5\pi | |
21 |
| ||||
\right)}}{2 |
The gamma function at the imaginary unit gives, :
\Gamma(i)=(-1+i)! ≈ -0.1549-0.4980i.
\Gamma(i)=
G(1+i) | |
G(i) |
=e-log.
Curiously enough,
\Gamma(i)
\pi/2 | ||
\int | \{\cot(x)\}dx=1- | |
0 |
\pi | + | |
2 |
i | log\left( | |
2 |
\pi | |
\sinh(\pi)\Gamma(i)2 |
\right).
\{ ⋅ \}
Because of the Euler Reflection Formula, and the fact that
\Gamma(\bar{z})=\bar{\Gamma}(z)
| ||||
\left|\Gamma(i\kappa)\right| |
The above integral therefore relates to the phase of
\Gamma(i)
The gamma function with other complex arguments returns
\Gamma(1+i)=i\Gamma(i) ≈ 0.498-0.155i
\Gamma(1-i)=-i\Gamma(-i) ≈ 0.498+0.155i
\Gamma(\tfrac12+\tfrac12i) ≈ 0.8181639995-0.7633138287i
\Gamma(\tfrac12-\tfrac12i) ≈ 0.8181639995+0.7633138287i
\Gamma(5+3i) ≈ 0.0160418827-9.4332932898i
\Gamma(5-3i) ≈ 0.0160418827+9.4332932898i.
The gamma function has a local minimum on the positive real axis
xmin=1.461632144968362341262\ldots
with the value
\Gamma\left(xmin\right)=0.885603194410888\ldots
Integrating the reciprocal gamma function along the positive real axis also gives the Fransén–Robinson constant.
On the negative real axis, the first local maxima and minima (zeros of the digamma function) are: