Of the uniform paracompact H3 honeycombs, 11 are regular, meaning that their group of symmetries acts transitively on their flags. These have Schläfli symbol,,,,,,,,,, and, and are shown below. Four have finite Ideal polyhedral cells:,,, and .
Name | Schläfli Symbol | Coxeter | Cell type | Face type | Edge figure | Vertex figure | Dual | Coxeter group | |
---|---|---|---|---|---|---|---|---|---|
Order-6 tetrahedral honeycomb | [6,3,3] | ||||||||
Hexagonal tiling honeycomb | |||||||||
Order-4 octahedral honeycomb | [4,4,3] | ||||||||
Square tiling honeycomb | |||||||||
Triangular tiling honeycomb | Self-dual | [3,6,3] | |||||||
Order-6 cubic honeycomb | [6,3,4] | ||||||||
Order-4 hexagonal tiling honeycomb | |||||||||
Order-4 square tiling honeycomb | Self-dual | [4,4,4] | |||||||
Order-6 dodecahedral honeycomb | [6,3,5] | ||||||||
Order-5 hexagonal tiling honeycomb | |||||||||
Order-6 hexagonal tiling honeycomb | Self-dual | [6,3,6] |
The alternations are listed, but are either repeats or don't generate uniform solutions. Single-hole alternations represent a mirror removal operation. If an end-node is removed, another simplex (tetrahedral) family is generated. If a hole has two branches, a Vinberg polytope is generated, although only Vinberg polytope with mirror symmetry are related to the simplex groups, and their uniform honeycombs have not been systematically explored. These nonsimplectic (pyramidal) Coxeter groups are not enumerated on this page, except as special cases of half groups of the tetrahedral ones. Seven uniform honeycombs that arise here as alternations have been numbered 152 to 158, after the 151 Wythoffian forms not requiring alternation for their construction.
[6,3,3] | 0.0422892336 | [1<sup>+</sup>,6,(3,3)<sup>+</sup>] = [3,3<sup>[3]]+ | 15 | ||
[4,4,3] | 0.0763304662 | [1<sup>+</sup>,4,1<sup>+</sup>,4,3<sup>+</sup>] | 15 | ||
[3,3<sup>[3]] | 0.0845784672 | [3,3<sup>[3]]+ | 4 | ||
[6,3,4] | 0.1057230840 | [1<sup>+</sup>,6,3<sup>+</sup>,4,1<sup>+</sup>] = [3<sup>[]x[]]+ | 15 | ||
[3,4<sup>1,1</sup>] | 0.1526609324 | [3<sup>+</sup>,4<sup>1<sup>+</sup>,1<sup>+</sup></sup>] | 4 | ||
[3,6,3] | 0.1691569344 | [3<sup>+</sup>,6,3<sup>+</sup>] | 8 | ||
[6,3,5] | 0.1715016613 | [1<sup>+</sup>,6,(3,5)<sup>+</sup>] = [5,3<sup>[3]]+ | 15 | ||
[6,3<sup>1,1</sup>] | 0.2114461680 | [1<sup>+</sup>,6,(3<sup>1,1</sup>)<sup>+</sup>] = [3<sup>[]x[]]+ | 4 | ||
[4,3<sup>[3]] | 0.2114461680 | [1<sup>+</sup>,4,3<sup>[3]]+ = [3<sup>[]x[]]+ | 4 | ||
[4,4,4] | 0.2289913985 | [4<sup>+</sup>,4<sup>+</sup>,4<sup>+</sup>]+ | 6 | ||
[6,3,6] | 0.2537354016 | [1<sup>+</sup>,6,3<sup>+</sup>,6,1<sup>+</sup>] = [3<sup>[3,3]]+ | 8 | ||
[(4,4,3,3)] | 0.3053218647 | [(4,1<sup>+</sup>,4,(3,3)<sup>+</sup>)] | 4 | ||
[5,3<sup>[3]] | 0.3430033226 | [5,3<sup>[3]]+ | 4 | ||
[(6,3,3,3)] | 0.3641071004 | [(6,3,3,3)]+ | 9 | ||
[3<sup>[]x[]] | 0.4228923360 | [3<sup>[]x[]]+ | 1 | ||
[4<sup>1,1,1</sup>] | 0.4579827971 | [1<sup>+</sup>,4<sup>1<sup>+</sup>,1<sup>+</sup>,1<sup>+</sup></sup>] | 0 | ||
[6,3<sup>[3]] | 0.5074708032 | [1<sup>+</sup>,6,3<sup>[3]] = [3<sup>[3,3]]+ | 2 | ||
[(6,3,4,3)] | 0.5258402692 | [(6,3<sup>+</sup>,4,3<sup>+</sup>)] | 9 | ||
[(4,4,4,3)] | 0.5562821156 | [(4,1<sup>+</sup>,4,1<sup>+</sup>,4,3<sup>+</sup>)] | 9 | ||
[(6,3,5,3)] | 0.6729858045 | [(6,3,5,3)]+ | 9 | ||
[(6,3,6,3)] | 0.8457846720 | [(6,3<sup>+</sup>,6,3<sup>+</sup>)] | 5 | ||
[(4,4,4,4)] | 0.9159655942 | [(4<sup>+</sup>,4<sup>+</sup>,4<sup>+</sup>,4<sup>+</sup>)] | 1 | ||
[3<sup>[3,3]] | 1.014916064 | [3<sup>[3,3]]+ | 0 |
The complete list of nonsimplectic (non-tetrahedral) paracompact Coxeter groups was published by P. Tumarkin in 2003.[1] The smallest paracompact form in H3 can be represented by or, or [∞,3,3,∞] which can be constructed by a mirror removal of paracompact hyperbolic group [3,4,4] as [3,4,1<sup>+</sup>,4] : = . The doubled fundamental domain changes from a tetrahedron into a quadrilateral pyramid. Another pyramid is or, constructed as [4,4,1<sup>+</sup>,4] = [∞,4,4,∞] : = .
Removing a mirror from some of the cyclic hyperbolic Coxeter graphs become bow-tie graphs: [(3,3,4,1<sup>+</sup>,4)] = [((3,∞,3)),((3,∞,3))] or, [(3,4,4,1<sup>+</sup>,4)] = [((4,∞,3)),((3,∞,4))] or, [(4,4,4,1<sup>+</sup>,4)] = [((4,∞,4)),((4,∞,4))] or . =, =, = .
Another nonsimplectic half groups is ↔ .
A radical nonsimplectic subgroup is ↔, which can be doubled into a triangular prism domain as ↔ .
Honeycomb name Coxeter diagram: Schläfli symbol | Cells by location (and count around each vertex) | Vertex figure | Picture | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | Alt | |||||
[137] | alternated hexagonal (ahexah) (↔) = | - | - | (4) (3.3.3.3.3.3) | (4) (3.3.3) | (3.6.6) | |||
[138] | cantic hexagonal (tahexah) ↔ | (1) (3.3.3.3) | - | (2) (3.6.3.6) | (2) (3.6.6) | ||||
[139] | runcic hexagonal (birahexah) ↔ | (1) (4.4.4) | (1) (4.4.3) | (1) (3.3.3.3.3.3) | (3) (3.4.3.4) | ||||
[140] | runcicantic hexagonal (bitahexah) ↔ | (1) (3.6.6) | (1) (4.4.3) | (1) (3.6.3.6) | (2) (4.6.6) | ||||
Nonuniform | snub rectified order-6 tetrahedral ↔ sr | Irr. (3.3.3) | |||||||
Nonuniform | cantic snub order-6 tetrahedral sr3 | ||||||||
Nonuniform | omnisnub order-6 tetrahedral ht0,1,2,3 | Irr. (3.3.3) |
There are 15 forms, generated by ring permutations of the Coxeter group: [6,3,4] or
There are 9 forms, generated by ring permutations of the Coxeter group: [6,3,6] or
There are 9 forms, generated by ring permutations of the Coxeter group: [3,6,3] or
There are 15 forms, generated by ring permutations of the Coxeter group: [4,4,3] or
Honeycomb name Coxeter diagram and Schläfli symbol | Cell counts/vertex and positions in honeycomb | Vertex figure | Picture | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | Alt | |||||
[83] | alternated square ↔ h | - | - | - | (6) | (8) | |||
[84] | cantic square ↔ h2 | (1) | - | - | (2) | (2) | |||
[85] | runcic square ↔ h3 | (1) | - | - | (1) . | (4) | |||
[86] | runcicantic square ↔ | (1) | - | - | (1) | (2) | |||
[153] | alternated rectified square ↔ hr | - | - | ||||||
157 | - | - | |||||||
snub order-4 octahedral = = s | - | - | |||||||
runcisnub order-4 octahedral s3 | |||||||||
152 | snub square = s | - | - | ||||||
Nonuniform | snub rectified order-4 octahedral sr | - | |||||||
Nonuniform | alternated runcitruncated square ht0,1,3 | ||||||||
Nonuniform | omnisnub square ht0,1,2,3 |
There are 9 forms, generated by ring permutations of the Coxeter group: [4,4,4] or .
There are 11 forms (of which only 4 are not shared with the [4,4,3] family), generated by ring permutations of the Coxeter group:
Honeycomb name Coxeter diagram | Cells by location (and count around each vertex) | Vertex figure | Picture | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0' | 3 | Alt | |||||
snub order-4 octahedral = = s | - | - | |||||||
Nonuniform | snub rectified order-4 octahedral ↔ sr | (3.3.3.3.4) | (3.3.3) | (3.3.3.3.4) | (3.3.4.3.4) | +(3.3.3) |
There are 7 forms, (all shared with [4,4,4] family), generated by ring permutations of the Coxeter group:
Honeycomb name Coxeter diagram | Cells by location (and count around each vertex) | Vertex figure | Picture | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0' | 3 | Alt | ||||||||||||||
[77] | order-4 square (sisquah) (↔ ↔) = | - | - | Cube | ||||||||||||||
[78] | truncated order-4 square (tissish) (↔) = (↔) | |||||||||||||||||
[83] | Alternated square ↔ | - | - align=center BGCOLOR="#e0f0f0" | Nonsimplectic | - | |||||||||||||
Nonsimplectic | ↔ | - | ||||||||||||||||
Scaliform | Snub order-4 square | - | ||||||||||||||||
Nonuniform | - | |||||||||||||||||
Nonuniform | - | |||||||||||||||||
[153] | (↔) = (↔) | |||||||||||||||||
Nonuniform | Snub square ↔ ↔ | (3.3.4.3.4) | (3.3.3) | (3.3.4.3.4) | (3.3.4.3.4) | +(3.3.3) |
There are 11 forms (and only 4 not shared with [6,3,4] family), generated by ring permutations of the Coxeter group: [6,3<sup>1,1</sup>] or .
Honeycomb name Coxeter diagram | Cells by location (and count around each vertex) | Vertex figure | Picture | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0' | 3 | Alt | |||||
[141] | alternated order-4 hexagonal (ashexah) ↔ ↔ ↔ | (4.6.6) | |||||||
Nonuniform | bisnub order-4 hexagonal ↔ | ||||||||
Nonuniform | snub rectified order-4 hexagonal ↔ | (3.3.3.3.6) | (3.3.3) | (3.3.3.3.6) | (3.3.3.3.3) | +(3.3.3) |
There are 11 forms, 4 unique to this family, generated by ring permutations of the Coxeter group:, with ↔ .
Honeycomb name Coxeter diagram | Cells by location | Vertex figure | Picture | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | Alt | |||||
snub order-4 octahedral = = | - | - | |||||||
Nonuniform | |||||||||
155 | alternated tetrahedral-square ↔ |
There are 9 forms, generated by ring permutations of the Coxeter group: .
There are 5 forms, 1 unique, generated by ring permutations of the Coxeter group: . Repeat constructions are related as: ↔, ↔, and ↔ .
Honeycomb name Coxeter diagram | Cells by location (and count around each vertex) | Vertex figure | ||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | Alt | ||||
[83] | alternated square (↔ ↔) = | (6) (4.4.4.4) | (6) (4.4.4.4) | (6) (4.4.4.4) | (6) (4.4.4.4) | (8) (4.4.4) | (4.3.4.3) | |
[77] | alternated order-4 square (sisquah) ↔ | - | ||||||
158 | cantic order-4 square ↔ | |||||||
Nonuniform | cyclosnub square | |||||||
Nonuniform | snub order-4 square | |||||||
Nonuniform | bisnub order-4 square ↔ | (3.3.4.3.4) | (3.3.4.3.4) | (3.3.4.3.4) | (3.3.4.3.4) | +(3.3.3) |
There are 9 forms, generated by ring permutations of the Coxeter group: .
There are 9 forms, generated by ring permutations of the Coxeter group:
There are 9 forms, generated by ring permutations of the Coxeter group:
There are 6 forms, generated by ring permutations of the Coxeter group: .
Honeycomb name Coxeter diagram | Cells by location (and count around each vertex) | Vertex figure | Picture | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | Alt | |||||
[141] | alternated order-4 hexagonal (ashexah) ↔ ↔ ↔ | (3.3.3.3.3.3) | (3.3.3.3.3.3) | (3.3.3.3.3.3) | (3.3.3.3.3.3) | +(3.3.3.3) | (4.6.6) | ||
Nonuniform | cyclocantisnub hexagonal-triangular | ||||||||
Nonuniform | cycloruncicantisnub hexagonal-triangular | ||||||||
Nonuniform | snub rectified hexagonal-triangular | (3.3.3.3.6) | (3.3.3.3.6) | (3.3.3.3.6) | (3.3.3.3.6) | +(3.3.3) |
There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [3,3<sup>[3]] or . 7 are half symmetry forms of [3,3,6]: ↔ .
There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [4,3<sup>[3]] or . 7 are half symmetry forms of [4,3,6]: ↔ .
There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [5,3<sup>[3]] or . 7 are half symmetry forms of [5,3,6]: ↔ .
There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [6,3<sup>[3]] or . 7 are half symmetry forms of [6,3,6]: ↔ .
There are 8 forms, 1 unique, generated by ring permutations of the Coxeter group: . Two are duplicated as ↔, two as ↔, and three as ↔ .
There are 4 forms, 0 unique, generated by ring permutations of the Coxeter group: . They are repeated in four families: ↔ (index 2 subgroup), ↔ (index 4 subgroup), ↔ (index 6 subgroup), and ↔ (index 24 subgroup).
Alternation honeycombs | ||||||||||||||||||||
{\bar{R}}3 [4,4,3] | [4,4,3] | 15 | [1<sup>+</sup>,4,1<sup>+</sup>,4,3<sup>+</sup>] | (6) | (↔) (↔) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[4,4,3]+ | (1) | |||||||||||||||||||
{\bar{N}}3 [4,4,4] | [4,4,4] | 3 | [1<sup>+</sup>,4,1<sup>+</sup>,4,1<sup>+</sup>,4,1<sup>+</sup>] | (3) | (↔ =) | |||||||||||||||
[4,4,4] ↔ | (3) | [1<sup>+</sup>,4,1<sup>+</sup>,4,1<sup>+</sup>,4,1<sup>+</sup>] | (3) | (↔) | ||||||||||||||||
[2<sup>+</sup>[4,4,4]] | 3 | [2<sup>+</sup>[(4,4<sup>+</sup>,4,2<sup>+</sup>)]] | (2) | |||||||||||||||||
[2<sup>+</sup>[4,4,4]]+ | (1) | |||||||||||||||||||
{\bar{V}}3 [6,3,3] | [6,3,3] | 15 | [1<sup>+</sup>,6,(3,3)<sup>+</sup>] | (2) | (↔) | |||||||||||||||
[6,3,3]+ | (1) | |||||||||||||||||||
{\bar{BV}}3 [6,3,4] | [6,3,4] | 15 | [1<sup>+</sup>,6,3<sup>+</sup>,4,1<sup>+</sup>] | (6) | (↔) (↔) | |||||||||||||||
[6,3,4]+ | (1) | |||||||||||||||||||
{\bar{HV}}3 [6,3,5] | [6,3,5] | 15 | [1<sup>+</sup>,6,(3,5)<sup>+</sup>] | (2) | (↔) | |||||||||||||||
[6,3,5]+ | (1) | |||||||||||||||||||
{\bar{Y}}3 [3,6,3] | [3,6,3] | 5 | ||||||||||||||||||
[3,6,3] ↔ | (1) | [2<sup>+</sup>[3<sup>+</sup>,6,3<sup>+</sup>]] | (1) | |||||||||||||||||
[2<sup>+</sup>[3,6,3]] | 3 | [2<sup>+</sup>[3,6,3]]+ | (1) | |||||||||||||||||
{\bar{Z}}3 [6,3,6] | [6,3,6] | 6 | [1<sup>+</sup>,6,3<sup>+</sup>,6,1<sup>+</sup>] | (2) | (↔) | |||||||||||||||
[2<sup>+</sup>[6,3,6]] ↔ | (1) | [2<sup>+</sup>[(6,3<sup>+</sup>,6,2<sup>+</sup>)]] | (2) | |||||||||||||||||
[2<sup>+</sup>[6,3,6]] | 2 | |||||||||||||||||||
[2<sup>+</sup>[6,3,6]]+ | (1) |
Alternation honeycombs | ||||||||||||
{\bar{DV}}3 [6,3<sup>1,1</sup>] | [6,3<sup>1,1</sup>] | 4 | ||||||||||
[1[6,3<sup>1,1</sup>]]=[6,3,4] ↔ | (7) | [1[1<sup>+</sup>,6,3<sup>1,1</sup>]]+ | (2) | (↔) | ||||||||
[1[6,3<sup>1,1</sup>]]+=[6,3,4]+ | (1) | |||||||||||
{\bar{O}}3 [3,4<sup>1,1</sup>] | [3,4<sup>1,1</sup>] | 4 | [3<sup>+</sup>,4<sup>1,1</sup>]+ | (2) | ↔ | |||||||
[1[3,4<sup>1,1</sup>]]=[3,4,4] ↔ | (7) | [1[3<sup>+</sup>,4<sup>1,1</sup>]]+ | (2) | |||||||||
[1[3,4<sup>1,1</sup>]]+ | (1) | |||||||||||
{\bar{M}}3 [4<sup>1,1,1</sup>] | [4<sup>1,1,1</sup>] | 0 | (none) | |||||||||
[1[4<sup>1,1,1</sup>]]=[4,4,4] ↔ | (4) | [1[1<sup>+</sup>,4,1<sup>+</sup>,4<sup>1,1</sup>]]+=[(4,1<sup>+</sup>,4,1<sup>+</sup>,4,2<sup>+</sup>)] | (4) | (↔) | ||||||||
[3[4<sup>1,1,1</sup>]]=[4,4,3] ↔ | (3) | [3[1<sup>+</sup>,4<sup>1,1,1</sup>]]+=[1<sup>+</sup>,4,1<sup>+</sup>,4,3<sup>+</sup>] | (2) | (↔) | ||||||||
[3[4<sup>1,1,1</sup>]]+=[4,4,3]+ | (1) |
Alternation honeycombs | |||||||||||
{\widehat{CR}}3 [(4,4,4,3)] | [(4,4,4,3)] | 6 | [(4,1<sup>+</sup>,4,1<sup>+</sup>,4,3<sup>+</sup>)] | (2) | ↔ | ||||||
[2<sup>+</sup>[(4,4,4,3)]] | 3 | [2<sup>+</sup>[(4,4<sup>+</sup>,4,3<sup>+</sup>)]] | (2) | ||||||||
[2<sup>+</sup>[(4,4,4,3)]]+ | (1) | ||||||||||
{\widehat{RR}}3 [4<sup>[4]] | [4<sup>[4]] | (none) | |||||||||
[2<sup>+</sup>[4<sup>[4]]] | 1 | [2<sup>+</sup>[(4<sup>+</sup>,4)<sup>[2]]] | (1) | ||||||||
[1[4<sup>[4]]]=[4,4<sup>1,1</sup>] ↔ | (2) | [(1<sup>+</sup>,4)<sup>[4]] | (2) | ↔ | |||||||
[2[4<sup>[4]]]=[4,4,4] ↔ | (1) | [2<sup>+</sup>[(1<sup>+</sup>,4,4)<sup>[2]]] | (1) | ||||||||
[(2<sup>+</sup>,4)[4<sup>[4]]]=[2<sup>+</sup>[4,4,4]] = | (1) | [(2<sup>+</sup>,4)[4<sup>[4]]]+ = [2<sup>+</sup>[4,4,4]]+ | (1) | ||||||||
{\widehat{AV}}3 [(6,3,3,3)] | [(6,3,3,3)] | 6 | |||||||||
[2<sup>+</sup>[(6,3,3,3)]] | 3 | [2<sup>+</sup>[(6,3,3,3)]]+ | (1) | ||||||||
{\widehat{BV}}3 [(3,4,3,6)] | [(3,4,3,6)] | 6 | [(3<sup>+</sup>,4,3<sup>+</sup>,6)] | (1) | |||||||
[2<sup>+</sup>[(3,4,3,6)]] | 3 | [2<sup>+</sup>[(3,4,3,6)]]+ | (1) | ||||||||
{\widehat{HV}}3 [(3,5,3,6)] | [(3,5,3,6)] | 6 | |||||||||
[2<sup>+</sup>[(3,5,3,6)]] | 3 | [2<sup>+</sup>[(3,5,3,6)]]+ | (1) | ||||||||
{\widehat{VV}}3 [(3,6)<sup>[2]] | [(3,6)<sup>[2]] | 2 | |||||||||
[2<sup>+</sup>[(3,6)<sup>[2]]] | 1 | ||||||||||
[2<sup>+</sup>[(3,6)<sup>[2]]] | 1 | ||||||||||
[2<sup>+</sup>[(3,6)<sup>[2]]] = | (1) | [2<sup>+</sup>[(3<sup>+</sup>,6)<sup>[2]]] | (1) | ||||||||
[(2,2)<sup>+</sup>[(3,6)<sup>[2]]] | 1 | [(2,2)<sup>+</sup>[(3,6)<sup>[2]]]+ | (1) |
Alternation honeycombs | |||||||||||
{\widehat{BR}}3 [(3,3,4,4)] | [(3,3,4,4)] | 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
[1[(4,4,3,3)]]=[3,4<sup>1,1</sup>] ↔ | (7) | [1[(3,3,4,1<sup>+</sup>,4)]]+ = [3<sup>+</sup>,4<sup>1,1</sup>]+ | (2) | (=) | |||||||
[1[(3,3,4,4)]]+ = [3,4<sup>1,1</sup>]+ | (1) | ||||||||||
{\bar{DP}}3 [3<sup>[ ]x[]] | [3<sup>[ ]x[]] | 1 | |||||||||
[1[3<sup>[ ]x[]]]=[6,3<sup>1,1</sup>] ↔ | (2) | ||||||||||
[1[3<sup>[ ]x[]]]=[4,3<sup>[3]] ↔ | (2) | ||||||||||
[2[3<sup>[ ]x[]]]=[6,3,4] ↔ | (3) | [2[3<sup>[ ]x[]]]+ =[6,3,4]+ | (1) | ||||||||
{\bar{PP}}3 [3<sup>[3,3]] | [3<sup>[3,3]] | 0 | (none) | ||||||||
[1[3<sup>[3,3]]]=[6,3<sup>[3]] ↔ | 0 | (none) | |||||||||
[3[3<sup>[3,3]]]=[3,6,3] ↔ | (2) | ||||||||||
[2[3<sup>[3,3]]]=[6,3,6] ↔ | (1) | ||||||||||
[(3,3)[3<sup>[3,3]]]=[6,3,3] = | (1) | [(3,3)[3<sup>[3,3]]]+ = [6,3,3]+ | (1) |
Symmetry in these graphs can be doubled by adding a mirror: [1[''n'',3<sup>[3]]] = [''n'',3,6]. Therefore ring-symmetry graphs are repeated in the linear graph families.
Alternation honeycombs | |||||||||||
{\bar{P}}3 [3,3<sup>[3]] | [3,3<sup>[3]] | 4 | |||||||||
[1[3,3<sup>[3]]]=[3,3,6] ↔ | (7) | [1[3,3<sup>[3]]]+ = [3,3,6]+ | (1) | ||||||||
{\bar{BP}}3 [4,3<sup>[3]] | [4,3<sup>[3]] | 4 | |||||||||
[1[4,3<sup>[3]]]=[4,3,6] ↔ | (7) | [1<sup>+</sup>,4,(3<sup>[3])+] | (2) | ↔ | |||||||
[4,3<sup>[3]]+ | (1) | ||||||||||
{\bar{HP}}3 [5,3<sup>[3]] | [5,3<sup>[3]] | 4 | |||||||||
[1[5,3<sup>[3]]]=[5,3,6] ↔ | (7) | [1[5,3<sup>[3]]]+ = [5,3,6]+ | (1) | ||||||||
{\bar{VP}}3 [6,3<sup>[3]] | [6,3<sup>[3]] | 2 | |||||||||
[6,3<sup>[3]] = | (2) | (↔) | (=) | ||||||||
[(3,3)[1<sup>+</sup>,6,3<sup>[3]]]=[6,3,3] ↔ ↔ | (1) | [(3,3)[1<sup>+</sup>,6,3<sup>[3]]]+ | (1) | ||||||||
[1[6,3<sup>[3]]]=[6,3,6] ↔ | (6) | [3[1<sup>+</sup>,6,3<sup>[3]]]+ = [3,6,3]+ | (1) | ↔ (=) | |||||||
[1[6,3<sup>[3]]]+ = [6,3,6]+ | (1) |