PSMD13 explained
26S proteasome non-ATPase regulatory subunit 13 is an enzyme that in humans is encoded by the PSMD13 gene.[1] [2]
Function
The 26S proteasome is a multicatalytic proteinase complex with a highly ordered structure composed of 2 complexes, a 20S core and a 19S regulator. The 20S core is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. The 19S regulator is composed of a base, which contains 6 ATPase subunits and 2 non-ATPase subunits, and a lid, which contains up to 10 non-ATPase subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a non-ATPase subunit of the 19S regulator. Two transcripts encoding different isoforms have been described.[3]
Clinical significance
The proteasome and its subunits are of clinical significance for at least two reasons: (1) a compromised complex assembly or a dysfunctional proteasome can be associated with the underlying pathophysiology of specific diseases, and (2) they can be exploited as drug targets for therapeutic interventions. More recently, more effort has been made to consider the proteasome for the development of novel diagnostic markers and strategies. An improved and comprehensive understanding of the pathophysiology of the proteasome should lead to clinical applications in the future.
The proteasomes form a pivotal component for the ubiquitin–proteasome system (UPS) [4] and corresponding cellular Protein Quality Control (PQC). Protein ubiquitination and subsequent proteolysis and degradation by the proteasome are important mechanisms in the regulation of the cell cycle, cell growth and differentiation, gene transcription, signal transduction and apoptosis.[5] Subsequently, a compromised proteasome complex assembly and function lead to reduced proteolytic activities and the accumulation of damaged or misfolded protein species. Such protein accumulation may contribute to the pathogenesis and phenotypic characteristics in neurodegenerative diseases,[6] [7] cardiovascular diseases,[8] [9] [10] inflammatory responses and autoimmune diseases,[11] and systemic DNA damage responses leading to malignancies.[12]
Several experimental and clinical studies have indicated that aberrations and deregulations of the UPS contribute to the pathogenesis of several neurodegenerative and myodegenerative disorders, including Alzheimer's disease,[13] Parkinson's disease[14] and Pick's disease,[15] Amyotrophic lateral sclerosis (ALS),[15] Huntington's disease,[14] Creutzfeldt–Jakob disease,[16] and motor neuron diseases, polyglutamine (PolyQ) diseases, Muscular dystrophies[17] and several rare forms of neurodegenerative diseases associated with dementia.[18] As part of the ubiquitin–proteasome system (UPS), the proteasome maintains cardiac protein homeostasis and thus plays a significant role in cardiac ischemic injury,[19] ventricular hypertrophy[20] and heart failure.[21] Additionally, evidence is accumulating that the UPS plays an essential role in malignant transformation. UPS proteolysis plays a major role in responses of cancer cells to stimulatory signals that are critical for the development of cancer. Accordingly, gene expression by degradation of transcription factors, such as p53, c-jun, c-Fos, NF-κB, c-Myc, HIF-1α, MATα2, STAT3, sterol-regulated element-binding proteins and androgen receptors are all controlled by the UPS and thus involved in the development of various malignancies.[22] Moreover, the UPS regulates the degradation of tumor suppressor gene products such as adenomatous polyposis coli (APC) in colorectal cancer, retinoblastoma (Rb). and von Hippel–Lindau tumor suppressor (VHL), as well as a number of proto-oncogenes (Raf, Myc, Myb, Rel, Src, Mos, ABL). The UPS is also involved in the regulation of inflammatory responses. This activity is usually attributed to the role of proteasomes in the activation of NF-κB which further regulates the expression of pro inflammatory cytokines such as TNF-α, IL-β, IL-8, adhesion molecules (ICAM-1, VCAM-1, P-selectin) and prostaglandins and nitric oxide (NO).[11] Additionally, the UPS also plays a role in inflammatory responses as regulators of leukocyte proliferation, mainly through proteolysis of cyclines and the degradation of CDK inhibitors.[23] Lastly, autoimmune disease patients with SLE, Sjögren syndrome and rheumatoid arthritis (RA) predominantly exhibit circulating proteasomes which can be applied as clinical biomarkers.[24]
Gene expression levels of the proteasomal subunits (PSMA1, PSMA5, PSMB4, PSMB5 and PSMD1) were investigated in 80 patients with neuroendocrine pulmonary tumors and compared to controls. The study reviled that PSMB4 mRNA was significantly associated with proliferative activity of neuroendocrine pulmonary tumors.[25] However, a role of PSMA5 was also indicated in neuroendocrine pulmonary tumors. The PSMA5 protein has further been associated with the biosynthesis of conjugated linoleic acid (CLA) in mammary tissue.[26]
Interactions
PSMD13 has been shown to interact with PSMC4[27] and PSMD6.[27]
Further reading
- Goff SP . Death by deamination: a novel host restriction system for HIV-1 . Cell . 114 . 3 . 281–3 . Aug 2003 . 12914693 . 10.1016/S0092-8674(03)00602-0 . 16340355 . free .
- Maruyama K, Sugano S . Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides . Gene . 138 . 1–2 . 171–4 . Jan 1994 . 8125298 . 10.1016/0378-1119(94)90802-8 .
- Seeger M, Ferrell K, Frank R, Dubiel W . HIV-1 tat inhibits the 20 S proteasome and its 11 S regulator-mediated activation . The Journal of Biological Chemistry . 272 . 13 . 8145–8 . Mar 1997 . 9079628 . 10.1074/jbc.272.13.8145 . free .
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S . Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library . Gene . 200 . 1–2 . 149–56 . Oct 1997 . 9373149 . 10.1016/S0378-1119(97)00411-3 .
- Madani N, Kabat D . An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein . Journal of Virology . 72 . 12 . 10251–5 . Dec 1998 . 9811770 . 110608 . 10.1128/JVI.72.12.10251-10255.1998.
- Simon JH, Gaddis NC, Fouchier RA, Malim MH . Evidence for a newly discovered cellular anti-HIV-1 phenotype . Nature Medicine . 4 . 12 . 1397–400 . Dec 1998 . 9846577 . 10.1038/3987 . 25235070 .
- Hoffman L, Gorbea C, Rechsteiner M . Identification, molecular cloning, and characterization of subunit 11 of the human 26S proteasome . FEBS Letters . 449 . 1 . 88–92 . Apr 1999 . 10225435 . 10.1016/S0014-5793(99)00403-2 . 34181533 . free . 1999FEBSL.449...88H .
- Roperch JP, Lethrone F, Prieur S, Piouffre L, Israeli D, Tuynder M, Nemani M, Pasturaud P, Gendron MC, Dausset J, Oren M, Amson RB, Telerman A . SIAH-1 promotes apoptosis and tumor suppression through a network involving the regulation of protein folding, unfolding, and trafficking: identification of common effectors with p53 and p21(Waf1) . Proceedings of the National Academy of Sciences of the United States of America . 96 . 14 . 8070–3 . Jul 1999 . 10393949 . 22189 . 10.1073/pnas.96.14.8070 . 1999PNAS...96.8070R . free .
- Mulder LC, Muesing MA . Degradation of HIV-1 integrase by the N-end rule pathway . The Journal of Biological Chemistry . 275 . 38 . 29749–53 . Sep 2000 . 10893419 . 10.1074/jbc.M004670200 . free .
- Zhang QH, Ye M, Wu XY, Ren SX, Zhao M, Zhao CJ, Fu G, Shen Y, Fan HY, Lu G, Zhong M, Xu XR, Han ZG, Zhang JW, Tao J, Huang QH, Zhou J, Hu GX, Gu J, Chen SJ, Chen Z . Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells . Genome Research . 10 . 10 . 1546–60 . Oct 2000 . 11042152 . 310934 . 10.1101/gr.140200 .
- Sheehy AM, Gaddis NC, Choi JD, Malim MH . Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein . Nature . 418 . 6898 . 646–50 . Aug 2002 . 12167863 . 10.1038/nature00939 . 2002Natur.418..646S . 4403228 .
- Huang X, Seifert U, Salzmann U, Henklein P, Preissner R, Henke W, Sijts AJ, Kloetzel PM, Dubiel W . The RTP site shared by the HIV-1 Tat protein and the 11S regulator subunit alpha is crucial for their effects on proteasome function including antigen processing . Journal of Molecular Biology . 323 . 4 . 771–82 . Nov 2002 . 12419264 . 10.1016/S0022-2836(02)00998-1 .
- Gaddis NC, Chertova E, Sheehy AM, Henderson LE, Malim MH . Comprehensive investigation of the molecular defect in vif-deficient human immunodeficiency virus type 1 virions . Journal of Virology . 77 . 10 . 5810–20 . May 2003 . 12719574 . 154025 . 10.1128/JVI.77.10.5810-5820.2003 .
- Lecossier D, Bouchonnet F, Clavel F, Hance AJ . Hypermutation of HIV-1 DNA in the absence of the Vif protein . Science . 300 . 5622 . 1112 . May 2003 . 12750511 . 10.1126/science.1083338 . 20591673 .
- Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L . The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA . Nature . 424 . 6944 . 94–8 . Jul 2003 . 12808465 . 1350966 . 10.1038/nature01707 . 2003Natur.424...94Z .
- Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D . Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts . Nature . 424 . 6944 . 99–103 . Jul 2003 . 12808466 . 10.1038/nature01709 . 2003Natur.424...99M . 4347374 .
Notes and References
- Hori T, Kato S, Saeki M, DeMartino GN, Slaughter CA, Takeuchi J, Toh-e A, Tanaka K . cDNA cloning and functional analysis of p28 (Nas6p) and p40.5 (Nas7p), two novel regulatory subunits of the 26S proteasome . Gene . 216 . 1 . 113–22 . Aug 1998 . 9714768 . 10.1016/S0378-1119(98)00309-6 .
- Coux O, Tanaka K, Goldberg AL . Structure and functions of the 20S and 26S proteasomes . Annual Review of Biochemistry . 65 . 1 . 801–47 . Nov 1996 . 8811196 . 10.1146/annurev.bi.65.070196.004101 .
- Web site: Entrez Gene: PSMD13 proteasome (prosome, macropain) 26S subunit, non-ATPase, 13.
- Kleiger G, Mayor T . Perilous journey: a tour of the ubiquitin–proteasome system . Trends in Cell Biology . 24 . 6 . 352–9 . Jun 2014 . 24457024 . 4037451 . 10.1016/j.tcb.2013.12.003 .
- Goldberg AL, Stein R, Adams J . New insights into proteasome function: from archaebacteria to drug development . Chemistry & Biology . 2 . 8 . 503–8 . Aug 1995 . 9383453 . 10.1016/1074-5521(95)90182-5. free .
- Sulistio YA, Heese K . The Ubiquitin-Proteasome System and Molecular Chaperone Deregulation in Alzheimer's Disease . Molecular Neurobiology . Jan 2015 . 25561438 . 10.1007/s12035-014-9063-4 . 53 . 2 . 905–31. 14103185 .
- Ortega Z, Lucas JJ . Ubiquitin–proteasome system involvement in Huntington's disease . Frontiers in Molecular Neuroscience . 7 . 77 . 2014 . 25324717 . 4179678 . 10.3389/fnmol.2014.00077 . free .
- Sandri M, Robbins J . Proteotoxicity: an underappreciated pathology in cardiac disease . Journal of Molecular and Cellular Cardiology . 71 . 3–10 . Jun 2014 . 24380730 . 4011959 . 10.1016/j.yjmcc.2013.12.015 .
- Drews O, Taegtmeyer H . Targeting the ubiquitin-proteasome system in heart disease: the basis for new therapeutic strategies . Antioxidants & Redox Signaling . 21 . 17 . 2322–43 . Dec 2014 . 25133688 . 4241867 . 10.1089/ars.2013.5823 .
- Wang ZV, Hill JA . Protein quality control and metabolism: bidirectional control in the heart . Cell Metabolism . 21 . 2 . 215–26 . Feb 2015 . 25651176 . 4317573 . 10.1016/j.cmet.2015.01.016 .
- Karin M, Delhase M . The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling . Seminars in Immunology . 12 . 1 . 85–98 . Feb 2000 . 10723801 . 10.1006/smim.2000.0210 .
- Ermolaeva MA, Dakhovnik A, Schumacher B . Quality control mechanisms in cellular and systemic DNA damage responses . Ageing Research Reviews . 23 . Pt A . 3–11 . Sep 2015 . 25560147 . 10.1016/j.arr.2014.12.009 . 4886828.
- Checler F, da Costa CA, Ancolio K, Chevallier N, Lopez-Perez E, Marambaud P . Role of the proteasome in Alzheimer's disease . Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease . 1502 . 1 . 133–8 . Jul 2000 . 10899438 . 10.1016/s0925-4439(00)00039-9. free .
- Chung KK, Dawson VL, Dawson TM . The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders . Trends in Neurosciences . 24 . 11 Suppl . S7–14 . Nov 2001 . 11881748 . 10.1016/s0166-2236(00)01998-6. 2211658 .
- Ikeda K, Akiyama H, Arai T, Ueno H, Tsuchiya K, Kosaka K . Morphometrical reappraisal of motor neuron system of Pick's disease and amyotrophic lateral sclerosis with dementia . Acta Neuropathologica . 104 . 1 . 21–8 . Jul 2002 . 12070660 . 10.1007/s00401-001-0513-5 . 22396490 .
- Manaka H, Kato T, Kurita K, Katagiri T, Shikama Y, Kujirai K, Kawanami T, Suzuki Y, Nihei K, Sasaki H . Marked increase in cerebrospinal fluid ubiquitin in Creutzfeldt–Jakob disease . Neuroscience Letters . 139 . 1 . 47–9 . May 1992 . 1328965 . 10.1016/0304-3940(92)90854-z. 28190967 .
- Mathews KD, Moore SA . Limb-girdle muscular dystrophy . Current Neurology and Neuroscience Reports . 3 . 1 . 78–85 . Jan 2003 . 12507416 . 10.1007/s11910-003-0042-9. 5780576 .
- Mayer RJ . From neurodegeneration to neurohomeostasis: the role of ubiquitin . Drug News & Perspectives . 16 . 2 . 103–8 . Mar 2003 . 12792671 . 10.1358/dnp.2003.16.2.829327.
- Calise J, Powell SR . The ubiquitin proteasome system and myocardial ischemia . American Journal of Physiology. Heart and Circulatory Physiology . 304 . 3 . H337–49 . Feb 2013 . 23220331 . 3774499 . 10.1152/ajpheart.00604.2012 .
- Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM . Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies . Circulation . 121 . 8 . 997–1004 . Mar 2010 . 20159828 . 2857348 . 10.1161/CIRCULATIONAHA.109.904557 .
- Powell SR . The ubiquitin-proteasome system in cardiac physiology and pathology . American Journal of Physiology. Heart and Circulatory Physiology . 291 . 1 . H1–H19 . Jul 2006 . 16501026 . 10.1152/ajpheart.00062.2006 . 7073263 .
- Adams J . Potential for proteasome inhibition in the treatment of cancer . Drug Discovery Today . 8 . 7 . 307–15 . Apr 2003 . 12654543 . 10.1016/s1359-6446(03)02647-3.
- Ben-Neriah Y . Regulatory functions of ubiquitination in the immune system . Nature Immunology . 3 . 1 . 20–6 . Jan 2002 . 11753406 . 10.1038/ni0102-20 . 26973319 .
- Egerer K, Kuckelkorn U, Rudolph PE, Rückert JC, Dörner T, Burmester GR, Kloetzel PM, Feist E . Circulating proteasomes are markers of cell damage and immunologic activity in autoimmune diseases . The Journal of Rheumatology . 29 . 10 . 2045–52 . Oct 2002 . 12375310 .
- Mairinger FD, Walter RF, Theegarten D, Hager T, Vollbrecht C, Christoph DC, Worm K, Ting S, Werner R, Stamatis G, Mairinger T, Baba H, Zarogoulidis K, Huang H, Li Q, Tsakiridis K, Zarogoulidis P, Schmid KW, Wohlschlaeger J . Gene Expression Analysis of the 26S Proteasome Subunit PSMB4 Reveals Significant Upregulation, Different Expression and Association with Proliferation in Human Pulmonary Neuroendocrine Tumours . Journal of Cancer . 5 . 8 . 646–54 . 2014 . 25157275 . 4142326 . 10.7150/jca.9955 .
- Jin YC, Li ZH, Hong ZS, Xu CX, Han JA, Choi SH, Yin JL, Zhang QK, Lee KB, Kang SK, Song MK, Kim YJ, Kang HS, Choi YJ, Lee HG . Conjugated linoleic acid synthesis-related protein proteasome subunit α 5 (PSMA5) is increased by vaccenic acid treatment in goat mammary tissue . Journal of Dairy Science . 95 . 8 . 4286–97 . Aug 2012 . 22818443 . 10.3168/jds.2011-4281 . free .
- Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D . Large-scale mapping of human protein-protein interactions by mass spectrometry . Molecular Systems Biology . 3 . 1 . 89 . 2007 . 17353931 . 1847948 . 10.1038/msb4100134 .