ORF9c explained
Symbol: | bCoV_Orf14 |
Betacoronavirus uncharacterised protein 14 |
Pfam: | PF17635 |
Interpro: | IPR035113 |
ORF9c (formerly also called ORF14) is an open reading frame (ORF) in coronavirus genomes of the subgenus Sarbecovirus.[1] It is 73 codons long in the SARS-CoV-2 genome.[2] Although it is often included in lists of Sarbecovirus viral accessory protein genes, experimental and bioinformatics evidence suggests ORF9c may not be a functional protein-coding gene.[3]
Nomenclature
There has been inconsistency in the nomenclature used for this gene in the scientific literature. In some work on SARS-CoV, it has been referred to as ORF14.[4] It has sometimes been referred to as ORF9b, while its longer upstream neighbor ORF9b was given the name ORF9a. The current recommended nomenclature refers to this gene as ORF9c, and the upstream gene as ORF9b.
Expression and interactions
ORF9c is one of two overlapping genes fully contained within the open reading frame of the N gene encoding coronavirus nucleocapsid protein, the other being ORF9b. It is unclear if ORF9c is functionally expressed during SARS-CoV-2 infections; it is reportedly not translated under experimental conditions.[5] When experimentally overexpressed, the protein interacts with sigma receptors and with the NF-kB pathway.[6] The SARS-CoV protein forms self-interactions suggesting protein dimer or higher-order oligomer formation.[7]
Evolution
ORF9c has about 74% sequence identity between SARS-CoV and SARS-CoV-2.
SARS-CoV-2 variants have been identified in which premature stop codons are introduced or where its start codon was lost, and the amino acid sequence is poorly conserved, supporting the hypothesis that it does not encode a functional protein.
Notes and References
- Redondo N, Zaldívar-López S, Garrido JJ, Montoya M . SARS-CoV-2 Accessory Proteins in Viral Pathogenesis: Knowns and Unknowns . Frontiers in Immunology . 12 . 708264 . 7 July 2021 . 34305949 . 8293742 . 10.3389/fimmu.2021.708264 . free .
- Jungreis I, Nelson CW, Ardern Z, Finkel Y, Krogan NJ, Sato K, Ziebuhr J, Stern-Ginossar N, Pavesi A, Firth AE, Gorbalenya AE, Kellis M . Conflicting and ambiguous names of overlapping ORFs in the SARS-CoV-2 genome: A homology-based resolution . Virology . 558 . 145–151 . June 2021 . 33774510 . 7967279 . 10.1016/j.virol.2021.02.013 .
- Jungreis I, Sealfon R, Kellis M . SARS-CoV-2 gene content and COVID-19 mutation impact by comparing 44 Sarbecovirus genomes . Nature Communications . 12 . 1 . 2642 . May 2021 . 33976134 . 8113528 . 10.1038/s41467-021-22905-7 . 2021NatCo..12.2642J .
- Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A, Coughlin SM, Freeman D, Girn N, Griffith OL, Leach SR, Mayo M, McDonald H, Montgomery SB, Pandoh PK, Petrescu AS, Robertson AG, Schein JE, Siddiqui A, Smailus DE, Stott JM, Yang GS, Plummer F, Andonov A, Artsob H, Bastien N, Bernard K, Booth TF, Bowness D, Czub M, Drebot M, Fernando L, Flick R, Garbutt M, Gray M, Grolla A, Jones S, Feldmann H, Meyers A, Kabani A, Li Y, Normand S, Stroher U, Tipples GA, Tyler S, Vogrig R, Ward D, Watson B, Brunham RC, Krajden M, Petric M, Skowronski DM, Upton C, Roper RL . The Genome sequence of the SARS-associated coronavirus . Science . 300 . 5624 . 1399–1404 . May 2003 . 12730501 . 10.1126/science.1085953 . 5491256 . free . 2003Sci...300.1399M .
- Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y, Tamir H, Achdout H, Stein D, Israeli O, Beth-Din A, Melamed S, Weiss S, Israely T, Paran N, Schwartz M, Stern-Ginossar N . The coding capacity of SARS-CoV-2 . Nature . 589 . 7840 . 125–130 . January 2021 . 32906143 . 10.1038/s41586-020-2739-1 . 221624633 . free . 2021Natur.589..125F .
- Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Hüttenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno E, Naing ZZ, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJ, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang XP, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O'Neal MC, Cai Y, Chang JC, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu-Ozturk D, Wang HY, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, von Zastrow M, Verdin E, Ashworth A, Schwartz O, d'Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor SN, Fraser JS, Gross JD, Sali A, Roth BL, Ruggero D, Taunton J, Kortemme T, Beltrao P, Vignuzzi M, García-Sastre A, Shokat KM, Shoichet BK, Krogan NJ . A SARS-CoV-2 protein interaction map reveals targets for drug repurposing . Nature . 583 . 7816 . 459–468 . July 2020 . 32353859 . 7431030 . 10.1038/s41586-020-2286-9 . 2020Natur.583..459G .
- von Brunn A, Teepe C, Simpson JC, Pepperkok R, Friedel CC, Zimmer R, Roberts R, Baric R, Haas J . Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome . PLOS ONE . 2 . 5 . e459 . May 2007 . 17520018 . 1868897 . 10.1371/journal.pone.0000459 . free . 2007PLoSO...2..459V .