Nonlinear eigenproblem explained

In mathematics, a nonlinear eigenproblem, sometimes nonlinear eigenvalue problem, is a generalization of the (ordinary) eigenvalue problem to equations that depend nonlinearly on the eigenvalue. Specifically, it refers to equations of the form

M(λ)x=0,

where

x ≠ 0

is a vector, and

M

is a matrix-valued function of the number

λ

. The number

λ

is known as the (nonlinear) eigenvalue, the vector

x

as the (nonlinear) eigenvector, and

(λ,x)

as the eigenpair. The matrix

M(λ)

is singular at an eigenvalue

λ

.

Definition

In the discipline of numerical linear algebra the following definition is typically used.[1] [2] [3] [4]

Let

\Omega\subseteq\Complex

, and let

M:\Omega\Complexn x

be a function that maps scalars to matrices. A scalar

λ\in\Complex

is called an eigenvalue, and a nonzero vector

x\in\Complexn

is called a right eigevector if

M(λ)x=0

. Moreover, a nonzero vector

y\in\Complexn

is called a left eigevector if

yHM(λ)=0H

, where the superscript

H

denotes the Hermitian transpose. The definition of the eigenvalue is equivalent to

\det(M(λ))=0

, where

\det

denotes the determinant.

The function

M

is usually required to be a holomorphic function of

λ

(in some domain

\Omega

).

In general,

M(λ)

could be a linear map, but most commonly it is a finite-dimensional, usually square, matrix.

Definition: The problem is said to be regular if there exists a

z\in\Omega

such that

\det(M(z))0

. Otherwise it is said to be singular.

Definition: An eigenvalue

λ

is said to have algebraic multiplicity

k

if

k

is the smallest integer such that the

k

th derivative of

\det(M(z))

with respect to

z

, in

λ

is nonzero. In formulas that
\left.dk\det(M(z))
dzk

\right|z0

but
\left.d\ell\det(M(z))
dz\ell

\right|z=0

for

\ell=0,1,2,...,k-1

.

Definition: The geometric multiplicity of an eigenvalue

λ

is the dimension of the nullspace of

M(λ)

.

Special cases

The following examples are special cases of the nonlinear eigenproblem.

M(λ)=AI.

M(λ)=AB.

M(λ)=A0+λA1+λ2A2.

M(λ)=

m
\sum
i=0

λiAi.

M(λ)=

m1
\sum
i=0

Aiλi+

m2
\sum
i=1

Biri(λ),

where

ri(λ)

are rational functions.

M(λ)=-Iλ+A0

m
+\sum
i=1

Ai

-\tauiλ
e

,

where

\tau1,\tau2,...,\taum

are given scalars, known as delays.

Jordan chains

Definition: Let

(λ0,x0)

be an eigenpair. A tuple of vectors

(x0,x1,...,xr-1)\in\Complexn x \Complexn x ... x \Complexn

is called a Jordan chain if\sum_^ M^ (\lambda_0) x_ = 0,for

\ell=0,1,...,r-1

, where

M(k)(λ0)

denotes the

k

th derivative of

M

with respect to

λ

and evaluated in

λ=λ0

. The vectors

x0,x1,...,xr-1

are called generalized eigenvectors,

r

is called the length of the Jordan chain, and the maximal length a Jordan chain starting with

x0

is called the rank of

x0

.

Theorem: A tuple of vectors

(x0,x1,...,xr-1)\in\Complexn x \Complexn x ... x \Complexn

is a Jordan chain if and only if the function

M(λ)\chi\ell(λ)

has a root in

λ=λ0

and the root is of multiplicity at least

\ell

for

\ell=0,1,...,r-1

, where the vector valued function

\chi\ell(λ)

is defined as\chi_\ell(\lambda) = \sum_^\ell x_k (\lambda-\lambda_0)^k.

Mathematical software

Eigenvector nonlinearity

Eigenvector nonlinearities is a related, but different, form of nonlinearity that is sometimes studied. In this case the function

M

maps vectors to matrices, or sometimes hermitian matrices to hermitian matrices.[14] [15]

References

  1. Güttel. Stefan. Tisseur. Françoise. Françoise Tisseur. 2017. The nonlinear eigenvalue problem. Acta Numerica. en. 26. 1–94. 10.1017/S0962492917000034. 46749298. 0962-4929.
  2. Ruhe. Axel. 1973. Algorithms for the Nonlinear Eigenvalue Problem. SIAM Journal on Numerical Analysis. 10. 4. 674–689. 10.1137/0710059. 0036-1429. 2156278. 1973SJNA...10..674R .
  3. Mehrmann. Volker. Volker Mehrmann. Voss. Heinrich. 2004. Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM-Mitteilungen. en. 27. 2. 121–152. 10.1002/gamm.201490007. 14493456 . 1522-2608.
  4. Book: Voss, Heinrich. Handbook of Linear Algebra. Chapman and Hall/CRC. 2014. 9781466507289. Hogben. Leslie. Leslie Hogben. 2. Boca Raton, FL. Nonlinear eigenvalue problems. https://www.mat.tuhh.de/forschung/rep/rep174.pdf.
  5. Hernandez . Vicente . Roman . Jose E. . Vidal . Vicente . SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems . ACM Transactions on Mathematical Software . September 2005 . 31 . 3 . 351–362 . 10.1145/1089014.1089019. 14305707 .
  6. Betcke . Timo . Higham . Nicholas J. . Mehrmann . Volker . Schröder . Christian . Tisseur . Françoise . NLEVP: A Collection of Nonlinear Eigenvalue Problems . ACM Transactions on Mathematical Software . February 2013 . 39 . 2 . 1–28 . 10.1145/2427023.2427024. 4271705 .
  7. Polizzi . Eric . 2002.04807 . FEAST Eigenvalue Solver v4.0 User Guide. 2020 . cs.MS .
  8. Güttel . Stefan . Van Beeumen . Roel . Meerbergen . Karl . Michiels . Wim . NLEIGS: A Class of Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems . SIAM Journal on Scientific Computing . 1 January 2014 . 36 . 6 . A2842–A2864 . 10.1137/130935045. 2014SJSC...36A2842G .
  9. Van Beeumen . Roel . Meerbergen . Karl . Michiels . Wim . Compact rational Krylov methods for nonlinear eigenvalue problems . SIAM Journal on Matrix Analysis and Applications . 2015 . 36 . 2 . 820–838 . 10.1137/140976698. 18893623 .
  10. Lietaert . Pieter . Meerbergen . Karl . Pérez . Javier . Vandereycken . Bart . Automatic rational approximation and linearization of nonlinear eigenvalue problems . IMA Journal of Numerical Analysis . 13 April 2022 . 42 . 2 . 1087–1115 . 10.1093/imanum/draa098. 1801.08622 .
  11. Web site: Berljafa . Mario . Steven . Elsworth . Güttel . Stefan . An overview of the example collection . index.m . 31 May 2022 . 15 July 2020.
  12. Jarlebring . Elias . Bennedich . Max . Mele . Giampaolo . Ringh . Emil . Upadhyaya . Parikshit . NEP-PACK: A Julia package for nonlinear eigenproblems . 23 November 2018. math.NA . 1811.09592 .
  13. Güttel. Stefan. Tisseur. Françoise. Françoise Tisseur. 2017. The nonlinear eigenvalue problem. Acta Numerica. en. 26. 1–94. 10.1017/S0962492917000034. 46749298. 0962-4929.
  14. Jarlebring. Elias. Kvaal. Simen. Michiels. Wim. 2014-01-01. An Inverse Iteration Method for Eigenvalue Problems with Eigenvector Nonlinearities. SIAM Journal on Scientific Computing. 36. 4. A1978–A2001. 10.1137/130910014. 1064-8275. 1212.0417. 2014SJSC...36A1978J . 16959079.
  15. Upadhyaya. Parikshit. Jarlebring. Elias. Rubensson. Emanuel H.. 2021. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization. 11. 1. 99. 10.3934/naco.2020018. 2155-3297. free. 1809.02183.

Further reading