Neville theta functions explained

In mathematics, the Neville theta functions, named after Eric Harold Neville,[1] are defined as follows:[2] [3] [4]

1/4
\theta
c(z,m)=\sqrt{2\pi
q(m)
}\,\, \sum _^\infty (q(m))^ \cos \left(\frac \right)
\theta
d(z,m)=\sqrt{2\pi
}\,\,\left(1+2\,\sum _^\infty (q(m))^ \cos \left(\frac \right) \right)

\thetan(z,m)=

\sqrt{2\pi
}\,\,\left(1+2\sum _^\infty (-1)^k (q(m))^ \cos \left(\frac \right) \right)

\thetas(z,m)=

\sqrt{2\pi
q(m)

1/4

}\,\, \sum_^\infty (-1)^k (q(m))^ \sin\left(\frac \right)

where: K(m) is the complete elliptic integral of the first kind,

K'(m)=K(1-m)

, and

q(m)=e-\pi

is the elliptic nome.

Note that the functions θp(z,m) are sometimes defined in terms of the nome q(m) and written θp(z,q) (e.g. NIST). The functions may also be written in terms of the τ parameter θp(z|τ) where

q=ei\pi\tau

.

Relationship to other functions

The Neville theta functions may be expressed in terms of the Jacobi theta functions[5]

\thetas(z|\tau)=\theta

2(0|\tau)\theta
1(z'|\tau)/\theta'

1(0|\tau)

\thetac(z|\tau)=\theta2(z'|\tau)/\theta2(0|\tau)

\thetan(z|\tau)=\theta4(z'|\tau)/\theta4(0|\tau)

\thetad(z|\tau)=\theta3(z'|\tau)/\theta3(0|\tau)

where

2(0|\tau)
z'=z/\theta
3
.

The Neville theta functions are related to the Jacobi elliptic functions. If pq(u,m) is a Jacobi elliptic function (p and q are one of s,c,n,d), then

\operatorname{pq}(u,m)=\thetap(u,m)
\thetaq(u,m)

.

Examples

\thetac(2.5,0.3)-0.65900466676738154967

\thetad(2.5,0.3)0.95182196661267561994

\thetan(2.5,0.3)1.0526693354651613637

\thetas(2.5,0.3)0.82086879524530400536

Symmetry

\thetac(z,m)=\thetac(-z,m)

\thetad(z,m)=\thetad(-z,m)

\thetan(z,m)=\thetan(-z,m)

\thetas(z,m)=-\thetas(-z,m)

References

Notes and References

  1. Abramowitz and Stegun, pp. 578-579
  2. Neville (1944)
  3. http://functions.wolfram.com/EllipticFunctions/NevilleThetaC/02/ The Mathematical Functions Site
  4. http://functions.wolfram.com/EllipticFunctions/NevilleThetaD/02/ The Mathematical Functions Site
  5. Web site: NIST Digital Library of Mathematical Functions (Release 1.0.17). Olver. F. W. J. . etal . 2017-12-22. National Institute of Standards and Technology. 2018-02-26 .