Nautilus Deep Space Observatory Explained

Nautilus Deep Space Observatory
Mission Type:Exoplanet observation
Operator:University of Arizona
Mission Duration:> 5 years[1]
Dimensions:Spherical inflatable spacecraft
Launch Rocket:Suggested: Starship or SLS
Orbit Reference:Sun-Earth L2
Telescope Type:Diffractive optic
Telescope Wavelength:0.5 – 1.7 μm (visible and near-infrared)
Instruments:Spectrographs: NAVIIS-VIS and NAVIIS-NIR

Nautilus Deep Space Observatory (NDSO) (also known as Nautilus array, Nautilus mission, Nautilus program, Nautilus telescope array and Project Nautilus) is a proposed deep space fleet of space telescopes designed to search for biosignatures of life in the atmospheres of exoplanets.[2] [3] [4] [5]

Daniel Apai, lead astronomer of NDSO from the University of Arizona, and associated with the Steward Observatory and the Lunar and Planetary Laboratory, commented "[With this new space telescope technology], we will be able to vastly increase the light-collecting power of telescopes, and among other science, study the atmospheres of 1,000 potentially Earth-like planets for signs of life."

Overview

The NDSO mission is based on the development of very lightweight telescope mirrors that enhance the power of space telescopes, while substantially lowering manufacturing and launch costs. The concept is based not on traditional reflective optics but on diffractive optics, employing a single diffractive lens made of a multiorder diffractive engineered (MODE) material. A MODE lens is ten times lighter and 100 times less susceptible to misalignments than conventional lightweight large telescope mirrors.

The NDSO mission proposes to launch a fleet of 35 space telescopes, each one a 14m (46feet) wide spherical telescope, and each featuring an 8.5m (27.9feet) diameter lens. Each of these space telescopes would be more powerful than the 6.5m (21.3feet) mirror of the James Webb Space Telescope, the 2.4m (07.9feet) wide mirror of the Hubble Space Telescope, and the NaNm (-2,147,483,648feet) mirror of the Ariel space telescope combined.[6] [7] The NDSO telescope array of 35 spacecraft, when used all together, would have the resolving power equivalent to a 50m (160feet) diameter telescope. With such telescopic power, the NDSO would be able to analyze the atmospheres of 1,000 exoplanets up to 1,000 light years away.

In January 2019, the NDSO research team, which includes lead astronomer Daniel Apai, as well as Tom Milster, Dae Wook Kim and Ronguang Liang from the University of Arizona College of Optical Sciences, and Jonathan Arenberg from Northrop Grumman Aerospace Systems, received a $1.1 million support grant from the Moore Foundation in order to construct a prototype of a single telescope, and test it on the 61abbr=onNaNabbr=on Kuiper Telescope before December 2020.

Spacecraft

Each individual Nautilus unit has a single solid MODE lens and would be packed in stackable form for a shared rocket launch, and once deployed, each unit would inflate into a diameter Mylar balloon with the instrument payload in the center.[1] [8]

See also

External links

Notes and References

  1. http://nautilus-array.space/wp-content/uploads/2019/07/Nautilus_Astro2020_WhitePaper.pdf Nautilus A Very Large-Aperture, Ultralight Space Telescope for Exoplanet Exploration, Time-domain Astrophysics, and Faint Objects.
  2. News: University of Arizona . A new lens for life-searching space telescopes . 2 August 2019 . . 5 August 2019 . University of Arizona .
  3. A Thousand Earths: A Very Large Aperture, Ultralight Space Telescope Array for Atmospheric Biosignature Surveys . 29 July 2019 . . 158 . 83 . 2 . 10.3847/1538-3881/ab2631 . Apai . Dániel . Milster . Tom D. . Kim . Dae Wook . Bixel . Alex . Schneider . Glenn . Liang . Ronguang . Arenberg . Jonathan . 1906.05079 . 2019AJ....158...83A . 10150/634070 . 186206769 . free . free .
  4. Web site: Apai, D. . et al. . Nautilus DeepSpace Observatory: A Giant Segmented Space Telescope Array for a Galactic Biosignature Survey . 2018 . . 5 August 2019 .
  5. Apai, D. . et al. . Nautilus Deep Space Observatory: A Giant Segmented Space Telescope Array for a Galactic Biosignature Survey . 2063 . 3127 . 1 February 2018 . . 2018LPICo2063.3127A .
  6. News: Wallace . John . Multi-order diffractive optical elements could lead to extremely light space telescopes - University of Arizona Project Nautilus aims to create a space telescope that can survey transiting exo-earths for biosignatures 1000 light years away. . 5 August 2019 . . 6 August 2019 .
  7. Web site: Staff . Nautilu: A Revolutionary Space Telescope - A very large aperture, ultralight space telescope for exoplanet exploration, time-domain astrophysics, and faint objects . 2019 . Nautilus-Array.space . 6 August 2019 .
  8. https://www.osa-opn.org/home/newsroom/2019/august/a_different_kind_of_eye_on_the_cosmos/ A Different Kind of Eye on the Cosmos.