Nanotube Explained

A nanotube is a nanoscale cylindrical structure with a hollow core, typically composed of carbon atoms, though other materials can also form nanotubes. Carbon nanotubes (CNTs) are the most well-known and widely studied type, consisting of rolled-up sheets of graphene with diameters ranging from about 1 to tens of nanometers and lengths up to millimeters.[1] [2] These structures exhibit remarkable physical, chemical, and electrical properties, including high tensile strength, excellent thermal and electrical conductivity, and unique quantum effects due to their one-dimensional nature. Nanotubes can be classified into two main categories: single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs), each with distinct characteristics and potential applications. Since their discovery in 1991, nanotubes have been the subject of intense research and development, with promising applications in fields such as electronics, materials science, energy storage, and medicine.[3]

Types

Nanotubes builders

Notes and References

  1. Maruyama S, Arnold MS, Krupke R, Peng LM . Physics and applications of nanotubes. . Journal of Applied Physics . February 2022 . 131 . 8 . 10.1063/5.0087075 .
  2. Encyclopedia: Ren G . Carbon nanotube . Encyclopedia Britannica . September 2024 .
  3. Web site: Current and Potential Applications of Carbon Nanotubes . Reidel H . March 2017 . PreScouter .
  4. Luo L, Mo L, Tong Z, Chen Y . Facile Synthesis of Ternary Boron Carbonitride Nanotubes . Nanoscale Research Letters . 4 . 8 . 834–838 . May 2009 . 20596377 . 2894111 . 10.1007/s11671-009-9325-7 .
  5. Rubio A, Corkill JL, Cohen ML . Theory of graphitic boron nitride nanotubes . Physical Review B . 49 . 7 . 5081–5084 . February 1994 . 10011453 . 10.1103/PhysRevB.49.5081 . 1994PhRvB..49.5081R .
  6. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A . Boron nitride nanotubes . Science . 269 . 5226 . 966–967 . August 1995 . 17807732 . 10.1126/science.269.5226.966 . 28988094 . 1995Sci...269..966C .
  7. Iijima S, Ichihashi T . June 1993 . Single-shell carbon nanotubes of 1-nm diameter . Nature . en . 363 . 6430 . 603–605 . 10.1038/363603a0 . 1476-4687.
  8. Feldkamp U, Niemeyer CM . Rational design of DNA nanoarchitectures . Angewandte Chemie . 45 . 12 . 1856–1876 . March 2006 . 16470892 . 10.1002/anie.200502358 .
  9. Goldberger J, He R, Zhang Y, Lee S, Yan H, Choi HJ, Yang P . Single-crystal gallium nitride nanotubes . Nature . 422 . 6932 . 599–602 . April 2003 . 12686996 . 10.1038/nature01551 .
  10. 10.1016/S0926-860X(00)00563-9 . The advantages of ozone treatment in the preparation of tubular silica structures . Applied Catalysis A: General . 203 . L1–L4 . 2000 . Kiricsi I, Fudala Á, Kónya Z, Hernádi K, Lentz P, Nagy JB .
  11. Tenne R, Margulis L, Genut M, Hodes G . 1992 . Polyhedral and cylindrical structures of tungsten disulphide . 1992Natur.360..444T. Nature . 360 . 6403 . 444–446 . 10.1038/360444a0. 4309310 .
  12. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH . Nanotubular highways for intercellular organelle transport . Science . 303 . 5660 . 1007–1010 . February 2004 . 14963329 . 10.1126/science.1093133 .
  13. 10.1016/j.cplett.2008.06.063. The structure of multilayered titania nanotubes based on delaminated anatase. 2008 . Mogilevsky G, Chen Q, Kleinhammes A, Wu Y . Chemical Physics Letters. 460. 4–6. 517–520. 2008CPL...460..517M .
  14. de Albornoz-Caratozzolo JM, Cervantes-Sodi F . Chiraltube, rolling 2D materials into chiral nanotubes . Nanoscale Advances . 6 . 1 . 79–91 . December 2023 . 38125603 . 10729892 . 10.1039/D3NA00301A .