NDRG1 explained
Protein NDRG1 is a protein that in humans is encoded by the NDRG1 gene.[1] [2] [3] [4]
This gene is a member of the N-myc downregulated gene family which belongs to the alpha/beta hydrolase superfamily. The protein encoded by this gene is a cytoplasmic protein involved in stress responses, hormone responses, cell growth, and differentiation . Mutations in this gene have been reported to be causative the autosomal-recessive version of Charcot-Marie-Tooth disease known as CMT4D.[4]
It has been reported that NDRG1 localizes to the endosomes and is a Rab4a effector involved in vesicular recycling.[5]
As reviewed by Fang et al.,[6] NDRG1 is involved in embryogenesis and development, cell growth and differentiation, lipid biosynthesis and myelination, stress responses, immunity, DNA repair and cell adhesion among other functions. NDRG1 is localised in the cytoplasm, nucleus and mitochondrion, at probabilities of 47.8%, 26.1% and 8.7%, respectively. In response to DNA damage NDRG1 translocates from the cytoplasm to the nucleus, where it may inhibit cell growth and promote DNA repair mechanisms. It is suggested that NDRG1 acts as a stress response gene or potentially as a transcription factor.
Gene
In humans, NDRG1 gene is located on the long arm of chromosome 8 (8q24.22). The gene encodes a 3.0 kilobases (kb) messenger RNA (mRNA) composed of 394 amino acids. NDRG1 belong to the NDRG1 family consisting of four members - NDRG1, NDRG2, NDRG3 and NDRG4 - that share a 53-65 % homology. In contrast to other family members, NDRG1 has a three tandem (GTRSRSHTSE) repeats in the C-terminal part.[7] [8]
The expression of NDRG1 is regulated by hypoxia dependent and independent manner. Under hypoxia the oxygen sensor hypoxia-inducible factor (HIF)-1α is translocated from cytoplasma to nucleus, where binds to HIF-1β to form HIF-1 complex. This complex works as a transcription factor, binds to hypoxia response element (HRE) in the promoter of hypoxia-related genes, one of these genes is the NDRG1.[9] Also heavy metal ions (nickel, cobalt, iron) upregulate NDRG1 by mimicking hypoxia. Opposite effect on NDRG1 expression could have myc oncoproteins, N-myc and c-myc, which transcriptionally repress the expression. These effect is mediated indirectly by decreasing its promoter activity.[6]
Role in cancer
As reviewed by Kovacevic et al.,[10] NDRG1 is a potent, iron-regulated growth and metastasis suppressor that was found to be negatively correlated with cancer progression in a number of tumors, including prostate, pancreatic, breast, and colon cancers. NDRG1 has marked anti-oncogenic activity, being associated with decreased cell proliferation, migration, invasion, and angiogenesis. The molecular functions of NDRG1 affect numerous signaling pathways that regulate cancer cell proliferation, invasion, angiogenesis, and migration. Specifically, NDRG1 inhibits the oncogenic RAS, c-Src, phosphatidylinositol 3-kinase (PI3K), WNT, ROCK1/pMLC2, and nuclear factor-light chain enhancer of activated B cell (NF-B) pathways, while promoting expression of key tumor-suppressive molecules including phosphatase and tensin homolog, E-cadherin, and mothers against decapentaplegic homolog 4 (SMAD4). Through its effects on E-cadherin and beta-catenin, which form the adherens junction and promote cell adhesion, NDRG1 also inhibits the epithelial to mesenchymal transition, an initial key step in metastasis.
Functions in DNA repair and aging
In one of its functions at a molecular level, NDRG1 binds and stabilizes methyltransferases, chiefly O-6-methylguanine-DNA methyltransferase (MGMT),[11] a DNA repair protein. Thus, higher expression of NDRG1 can promote MGMT protein stability and activity. Dominick et al.[12] showed NDRG1 and MGMT protein expression was increased by 2-fold to 3-fold for each of three strains of mice (Snell, GHKRO, and PAPPA-KO) with increased longevity. These authors strongly suggest a link between the increase in the MGMT DNA repair pathway and a delay in the aging process in these mouse strains. This is consistent with the DNA damage theory of aging.
Role in immune system
The NDRG1 plays an important role in allergy and anaphylaxis, defence against bacterial pathogens and bacterial clearance, inflammation and wound healing. In mast cells, NDRG1 is upregulated during maturation and helps to rapid degranulation, which leads to enhanced exocytosis in response to various stimuli.[13] Also was shown its role in T-cell clonal anergy downstream of Egr2, where NDRG1 is upregulated in the absence of costimulation to inhibit subsequent re-activation of T cells by TCR and CD28 signalling.[14]
Further reading
- Kovacevic Z, Richardson DR . The metastasis suppressor, Ndrg-1: a new ally in the fight against cancer . Carcinogenesis . 27 . 12 . 2355–66 . December 2006 . 16920733 . 10.1093/carcin/bgl146 .
- Maruyama K, Sugano S . Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides . Gene . 138 . 1–2 . 171–4 . January 1994 . 8125298 . 10.1016/0378-1119(94)90802-8 .
- Kalaydjieva L, Hallmayer J, Chandler D, Savov A, Nikolova A, Angelicheva D, King RH, Ishpekova B, Honeyman K, Calafell F, Shmarov A, Petrova J, Turnev I, Hristova A, Moskov M, Stancheva S, Petkova I, Bittles AH, Georgieva V, Middleton L, Thomas PK . 6 . Gene mapping in Gypsies identifies a novel demyelinating neuropathy on chromosome 8q24 . Nature Genetics . 14 . 2 . 214–7 . October 1996 . 8841199 . 10.1038/ng1096-214 . 9712904 .
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S . Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library . Gene . 200 . 1–2 . 149–56 . October 1997 . 9373149 . 10.1016/S0378-1119(97)00411-3 .
- Zhou D, Salnikow K, Costa M . Cap43, a novel gene specifically induced by Ni2+ compounds . Cancer Research . 58 . 10 . 2182–9 . May 1998 . 9605764 .
- Kurdistani SK, Arizti P, Reimer CL, Sugrue MM, Aaronson SA, Lee SW . Inhibition of tumor cell growth by RTP/rit42 and its responsiveness to p53 and DNA damage . Cancer Research . 58 . 19 . 4439–44 . October 1998 . 9766676 .
- Piquemal D, Joulia D, Balaguer P, Basset A, Marti J, Commes T . Differential expression of the RTP/Drg1/Ndr1 gene product in proliferating and growth arrested cells . Biochimica et Biophysica Acta (BBA) - Molecular Cell Research . 1450 . 3 . 364–73 . July 1999 . 10395947 . 10.1016/S0167-4889(99)00056-7 . free .
- Guan RJ, Ford HL, Fu Y, Li Y, Shaw LM, Pardee AB . Drg-1 as a differentiation-related, putative metastatic suppressor gene in human colon cancer . Cancer Research . 60 . 3 . 749–55 . February 2000 . 10676663 .
- Kalaydjieva L, Gresham D, Gooding R, Heather L, Baas F, de Jonge R, Blechschmidt K, Angelicheva D, Chandler D, Worsley P, Rosenthal A, King RH, Thomas PK . 6 . N-myc downstream-regulated gene 1 is mutated in hereditary motor and sensory neuropathy-Lom . American Journal of Human Genetics . 67 . 1 . 47–58 . July 2000 . 10831399 . 1287101 . 10.1086/302978 .
- Park H, Adams MA, Lachat P, Bosman F, Pang SC, Graham CH . Hypoxia induces the expression of a 43-kDa protein (PROXY-1) in normal and malignant cells . Biochemical and Biophysical Research Communications . 276 . 1 . 321–8 . September 2000 . 11006124 . 10.1006/bbrc.2000.3475 .
- Rutherford MN, Bayly GR, Matthews BP, Okuda T, Dinjens WM, Kondoh H, LeBrun DP . The leukemogenic transcription factor E2a-Pbx1 induces expression of the putative N-myc and p53 target gene NDRG1 in Ba/F3 cells . Leukemia . 15 . 3 . 362–70 . March 2001 . 11237058 . 10.1038/sj.leu.2402059 . free .
- Zhou RH, Kokame K, Tsukamoto Y, Yutani C, Kato H, Miyata T . Characterization of the human NDRG gene family: a newly identified member, NDRG4, is specifically expressed in brain and heart . Genomics . 73 . 1 . 86–97 . April 2001 . 11352569 . 10.1006/geno.2000.6496 .
- Qu X, Zhai Y, Wei H, Zhang C, Xing G, Yu Y, He F . Characterization and expression of three novel differentiation-related genes belong to the human NDRG gene family . Molecular and Cellular Biochemistry . 229 . 1–2 . 35–44 . January 2002 . 11936845 . 10.1023/A:1017934810825 . 24226208 .
- Cangul H, Salnikow K, Yee H, Zagzag D, Commes T, Costa M . Enhanced expression of a novel protein in human cancer cells: a potential aid to cancer diagnosis . Cell Biology and Toxicology . 18 . 2 . 87–96 . 2002 . 12046693 . 10.1023/A:1015376032736 . 20827323 .
- Cangul H, Salnikow K, Yee H, Zagzag D, Commes T, Costa M . Enhanced overexpression of an HIF-1/hypoxia-related protein in cancer cells . Environmental Health Perspectives . 110 . 783–8 . October 2002 . Suppl 5 . 12429530 . 1241245 . 10.1289/ehp.02110s5783 .
- Lachat P, Shaw P, Gebhard S, van Belzen N, Chaubert P, Bosman FT . Expression of NDRG1, a differentiation-related gene, in human tissues . Histochemistry and Cell Biology . 118 . 5 . 399–408 . November 2002 . 12432451 . 10.1007/s00418-002-0460-9 . 1599203 .
- Segawa T, Nau ME, Xu LL, Chilukuri RN, Makarem M, Zhang W, Petrovics G, Sesterhenn IA, McLeod DG, Moul JW, Vahey M, Srivastava S . 6 . Androgen-induced expression of endoplasmic reticulum (ER) stress response genes in prostate cancer cells . Oncogene . 21 . 57 . 8749–58 . December 2002 . 12483528 . 10.1038/sj.onc.1205992 . free .
- Symes AJ, Eilertsen M, Millar M, Nariculam J, Freeman A, Notara M, Feneley MR, Patel HR, Patel HR, Masters JR, Ahmed A . 6 . Quantitative analysis of BTF3, HINT1, NDRG1 and ODC1 protein over-expression in human prostate cancer tissue . PLOS ONE . 8 . 12 . e84295 . 2013 . 24386364 . 3874000 . 10.1371/journal.pone.0084295 . 2013PLoSO...884295S . free .
External links
Notes and References
- van Belzen N, Dinjens WN, Diesveld MP, Groen NA, van der Made AC, Nozawa Y, Vlietstra R, Trapman J, Bosman FT . 6 . A novel gene which is up-regulated during colon epithelial cell differentiation and down-regulated in colorectal neoplasms . Laboratory Investigation; A Journal of Technical Methods and Pathology . 77 . 1 . 85–92 . July 1997 . 9251681 .
- Kokame K, Kato H, Miyata T . Homocysteine-respondent genes in vascular endothelial cells identified by differential display analysis. GRP78/BiP and novel genes . The Journal of Biological Chemistry . 271 . 47 . 29659–65 . November 1996 . 8939898 . 10.1074/jbc.271.47.29659 . free .
- Zhang J, Chen S, Zhang W, Zhang J, Liu X, Shi H, Che H, Wang W, Li F, Yao L . 6 . Human differentiation-related gene NDRG1 is a Myc downstream-regulated gene that is repressed by Myc on the core promoter region . Gene . 417 . 1–2 . 5–12 . July 2008 . 18455888 . 10.1016/j.gene.2008.03.002 .
- Web site: Entrez Gene: NDRG1 N-myc downstream regulated gene 1.
- Kachhap SK, Faith D, Qian DZ, Shabbeer S, Galloway NL, Pili R, Denmeade SR, DeMarzo AM, Carducci MA . 6 . The N-Myc down regulated Gene1 (NDRG1) Is a Rab4a effector involved in vesicular recycling of E-cadherin . PLOS ONE . 2 . 9 . e844 . September 2007 . 17786215 . 1952073 . 10.1371/journal.pone.0000844 . 2007PLoSO...2..844K . Heisenberg . Carl-Philipp . free .
- Fang BA, Kovačević Ž, Park KC, Kalinowski DS, Jansson PJ, Lane DJ, Sahni S, Richardson DR . 6 . Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy . Biochimica et Biophysica Acta (BBA) - Reviews on Cancer . 1845 . 1 . 1–19 . January 2014 . 24269900 . 10.1016/j.bbcan.2013.11.002 .
- Sahni S, Park KC, Kovacevic Z, Richardson DR . Two mechanisms involving the autophagic and proteasomal pathways process the metastasis suppressor protein, N-myc downstream regulated gene 1 . Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease . 1865 . 6 . 1361–1378 . June 2019 . 30763642 . 10.1016/j.bbadis.2019.02.008 . 73439295 .
- Sun J, Zhang D, Bae DH, Sahni S, Jansson P, Zheng Y, Zhao Q, Yue F, Zheng M, Kovacevic Z, Richardson DR . 6 . Metastasis suppressor, NDRG1, mediates its activity through signaling pathways and molecular motors . Carcinogenesis . 34 . 9 . 1943–54 . September 2013 . 23671130 . 10.1093/carcin/bgt163 . free .
- Park KC, Paluncic J, Kovacevic Z, Richardson DR . Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer . Free Radical Biology & Medicine . May 2019 . 157 . 154–175 . 31132412 . 10.1016/j.freeradbiomed.2019.05.020 . 167220979 .
- Kovacevic Z, Menezes SV, Sahni S, Kalinowski DS, Bae DH, Lane DJ, Richardson DR . The Metastasis Suppressor, N-MYC Downstream-regulated Gene-1 (NDRG1), Down-regulates the ErbB Family of Receptors to Inhibit Downstream Oncogenic Signaling Pathways . The Journal of Biological Chemistry . 291 . 3 . 1029–52 . January 2016 . 26534963 . 4714189 . 10.1074/jbc.M115.689653 . free .
- Weiler M, Blaes J, Pusch S, Sahm F, Czabanka M, Luger S, Bunse L, Solecki G, Eichwald V, Jugold M, Hodecker S, Osswald M, Meisner C, Hielscher T, Rübmann P, Pfenning PN, Ronellenfitsch M, Kempf T, Schnölzer M, Abdollahi A, Lang F, Bendszus M, von Deimling A, Winkler F, Weller M, Vajkoczy P, Platten M, Wick W . 6 . mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy . Proceedings of the National Academy of Sciences of the United States of America . 111 . 1 . 409–14 . January 2014 . 24367102 . 3890826 . 10.1073/pnas.1314469111 . 2014PNAS..111..409W . free .
- Dominick G, Bowman J, Li X, Miller RA, Garcia GG . mTOR regulates the expression of DNA damage response enzymes in long-lived Snell dwarf, GHRKO, and PAPPA-KO mice . Aging Cell . 16 . 1 . 52–60 . February 2017 . 27618784 . 5242303 . 10.1111/acel.12525 .
- Kovacevic Z, Richardson DR . The metastasis suppressor, Ndrg-1: a new ally in the fight against cancer . Carcinogenesis . 27 . 12 . 2355–66 . December 2006 . 16920733 . 10.1093/carcin/bgl146 .
- Oh YM, Park HB, Shin JH, Lee JE, Park HY, Kho DH, Lee JS, Choi H, Okuda T, Kokame K, Miyata T, Kim IH, Lee SH, Schwartz RH, Choi K . 6 . Ndrg1 is a T-cell clonal anergy factor negatively regulated by CD28 costimulation and interleukin-2 . Nature Communications . 6 . 1 . 8698 . October 2015 . 26507712 . 4846325 . 10.1038/ncomms9698 . 2015NatCo...6.8698O .