Inositol Explained

In biochemistry, medicine, and related sciences, inositol generally refers to myo-inositol (formerly meso-inositol), the most important stereoisomer of the chemical compound cyclohexane-1,2,3,4,5,6-hexol. Its formula is ; the molecule has a ring of six carbon atoms, each with an hydrogen atom and a hydroxyl group (–OH). In myo-inositol, two of the hydroxyls, neither adjacent not opposite, lie above the respective hydrogens relative to the mean plane of the ring.

The compound is a carbohydrate, specifically a sugar alcohol (as distinct from aldoses like glucose) with half the sweetness of sucrose (table sugar). It is one of the most ancient components of living beings with multiple functions in eukaryotes, including structural lipids and secondary messengers. A human kidney makes about two grams per day from glucose, but other tissues synthesize it too. The highest concentration is in the brain, where it plays an important role in making other neurotransmitters and some steroid hormones bind to their receptors.[1] In other tissues, it mediates cell signal transduction in response to a variety of hormones, neurotransmitters, and growth factors and participates in osmoregulation.[2] In most mammalian cells the concentrations of myo-inositol are 5 to 500 times greater inside cells than outside them.

A 2023 meta-analysis found that inositol is a safe and effective treatment in the management of polycystic ovary syndrome (PCOS). However, there is only evidence of very low quality for its efficacy in increasing fertility for IVF in women with PCOS.[3]

The other naturally occurring stereoisomers of cyclohexane-1,2,3,4,5,6-hexol are scyllo-, muco-, -chiro-, -chiro-, and neo-inositol, although they occur in minimal quantities compared to myo-inositol. The other possible isomers are allo-, epi-, and cis-inositol.

History

myo-Inositol was first isolated from muscle extracts by Johanes Joseph Scherer (1814–1869) in 1850. It was formerly called meso-inositol to distinguish it from the chiro- isomers. However, since all other isomers are meso (non-chiral) compounds, the name myo-inositol is now preferred (myo- being a medical prefix for "muscle").

Inositol was once considered a member of the vitamin B complex, namely vitamin B8 before the discovery that it is made naturally in the human body, and therefore cannot be a vitamin or essential nutrient.

Chemical properties

myo-Inositol is a meso compound, meaning it is optically inactive because it has a plane of symmetry. It is a white crystalline powder, relatively stable in the air. It is highly soluble in water, slightly soluble in glacial acetic acid, ethanol, glycol, and glycerin, but insoluble in chloroform and ether.

In its most stable conformation, the myo-inositol isomer assumes the chair conformation, which moves the maximum number of hydroxyls to the equatorial position, where they are farthest apart from each other. In this conformation, the natural myo isomer has a structure in which five of the six hydroxyls (the first, third, fourth, fifth, and sixth) are equatorial, whereas the second hydroxyl group is axial.[4]

Physiological roles

myo-Inositol plays an important role as the structural basis for a number of secondary messengers in eukaryotic cells, the various inositol phosphates. In addition, inositol serves as an important component of the structural lipids phosphatidylinositol (PI) and its various phosphates, the phosphatidylinositol phosphate (PIP) lipids.

Biosynthesis

In humans, myo-Inositol is synthesized de novo but -chiro-inositol is not. myo-Inositol is synthesized from glucose 6-phosphate (G6P) in two steps. First, G6P is isomerised by an inositol-3-phosphate synthase enzyme (for example, ISYNA1) to myo-inositol 1-phosphate, which is then dephosphorylated by an inositol monophosphatase enzyme (for example, IMPA1) to give free myo-inositol. In humans, most inositol is synthesized in the kidneys, followed by testicles, typically in amounts of a few grams per day.[2]

At the peripheral level, myo-inositol is converted to -chiro-inositol by a specific epimerase. Only a minor fraction of myo-inositol is converted into -chiro-inositol. The activity of this epimerase is insulin dependent, causing a reduction of -chiro-inositol in muscle, fat, and liver when there is insulin resistance.[5] -chiro-inositol reduces the conversion of testosterone to estrogen, thereby increases the levels of testosterone and worsening PCOS.[6]

Phytic acid in plants

Inositol hexaphosphate, also called phytic acid or IP6, is a phytochemical and the principal storage form of phosphorus in many plant tissues, especially bran and seed.[7] Phosphorus and inositol in phytate form are not generally bioavailable to non-ruminant animals because these animals lack the digestive enzyme phytase required to remove the phosphate groups. Ruminants readily digest phytate because of the phytase produced by microorganisms in the rumen.[8] Moreover, phytic acid also chelates important minerals such as calcium, magnesium, iron, and zinc, making them unabsorbable, and contributing to mineral deficiencies in people whose diets rely highly on bran and seeds for their mineral intake, such as occurs in developing countries.[9] [10]

Inositol penta- (IP5), tetra- (IP4), and triphosphate (IP3) are also called "phytates".

Inositol or its phosphates and associated lipids are found in many foods, in particular fruit, especially cantaloupe and oranges. In plants, the hexaphosphate of inositol, phytic acid or its salts, the phytates, serve as phosphate stores in seed, for example in nuts and beans.[11] Phytic acid also occurs in cereals with high bran content. Phytate is, however, not directly bioavailable to humans in the diet, since it is not digestible. Some food preparation techniques partly break down phytates to change this. However, inositol in the form of phospholipids, as found in certain plant-derived substances such as lecithins, is well absorbed and relatively bioavailable.

Biological function

Inositol, phosphatidylinositol, and some of their mono- and polyphosphates function as secondary messengers in a number of intracellular signal transduction pathways. They are involved in a number of biological processes, including:

In one important family of pathways, phosphatidylinositol 4,5-bisphosphate (PIP2) is stored in cellular membranes until it is released by any of a number of signalling proteins and transformed into various secondary messengers, for example diacylglycerol and inositol trisphosphate.[18]

myo-Inositol has very low toxicity, with a reported LD50 10,000 mg/kg body weight (oral) in rats.

Industrial uses

Explosives industry

At the 1936 meeting of the American Chemical Society, professor Edward Bartow of the University of Iowa presented a commercially viable means of extracting large amounts of inositol from the phytic acid naturally present in waste corn. As a possible use for the chemical, he suggested 'inositol nitrate' as a more stable alternative to nitroglycerin.[19] Today, inositol nitrate is used to gelatinize nitrocellulose in many modern explosives and solid rocket propellants.[20]

Road salt

When plants are exposed to increasing concentrations of road salt, the plant cells become dysfunctional and undergo apoptosis, leading to inhibited growth. Inositol pretreatment could reduce these effects.[21]

Research and clinical applications

Trichotillomania

High doses of inositol may be used to treat trichotillomania (compulsive hair-pulling) and related disorders.[22]

Other illnesses

D-chiro-inositol is an important messenger molecule in insulin signaling.[23] Inositol supplementation has been shown to significantly decrease triglycerides and LDL cholesterol in patients with metabolic diseases.[23]

myo-Inositol is important for thyroid hormone synthesis. Depletion of myo-inositol may predispose to development of hypothyroidism. Patients with hypothyroidism have a higher demand for myo-inositol than healthy subjects.[24]

Inositol should not be routinely implemented for the management of preterm babies who have or are at a risk of infant respiratory distress syndrome (RDS).[25] Myo-inositol helps prevent neural tube defects with particular efficacy in combination with folic acid.[26]

Inositol is considered a safe and effective treatment for polycystic ovary syndrome (PCOS).[27] It works by increasing insulin sensitivity, which helps to improve ovarian function and reduce hyperandrogenism.[28] It is also shown to reduce the risk of metabolic disease in women with PCOS.[29] In addition, thanks to its role as FSH second messenger, myo-inositol is effective in restoring FSH/LH ratio and menstrual cycle regularization.[30] myo-Inositol's role as FSH second messenger leads to a correct ovarian follicle maturation and consequently to a higher oocyte quality. Improving the oocyte quality in both women with or without PCOS, myo-inositol can be considered as a possible approach for increasing the chance of success in assisted reproductive technologies.[31] [32] In contrast, -chiro-inositol can impair oocyte quality in a dose-dependent manner.[33] The high level of DCI seems to be related to elevated insulin levels retrieved in about 70% of PCOS women.[34] In this regard, insulin stimulates the irreversible conversion of myo-inositol to -chiro-inositol causing a drastic reduction of myo-inositol. myo-Inositol depletion is particularly damaging to ovarian follicles because it is involved in FSH signaling, which is impaired due to myo-inositol depletion.[5] Recent evidence reports a faster improvement of the metabolic and hormonal parameters when these two isomers are administered in their physiological ratio. The plasmatic ratio of myo-inositol and -chiro-inositol in healthy subjects is 40:1 of myo- and -chiro-inositol respectively.[35] The use of the 40:1 ratio shows the same efficacy of myo-inositol alone but in a shorter time. In addition, the physiological ratio does not impair oocyte quality.[36]

The use of inositols in PCOS is gaining more importance, and an efficacy higher than 70% with a strong safety profile is reported. On the other hand, about 30% of patients could show as inositol-resistant.[37] New evidence regarding PCOS aetiopathogenesis describes an alteration in the species and the quantity of each strain characterizing the normal gastrointestinal flora. This alteration could lead to chronic, low-level inflammation and malabsorption.[38] A possible solution could be represented by the combination of myo-inositol and α-lactalbumin. This combination shows a synergic effect in increasing myo-inositol absorption.[39] A recent study reported that the myo-inositol and α-lactalbumin combination increases myo-inositol plasmatic content in inositol-resistant patients with a relative improvement of hormonal and metabolic parameters.[40]

Use as a cutting agent

Inositol has been used as an adulterant or cutting agent for many illegal drugs, such as cocaine, methamphetamine, and sometimes heroin,[41] probably because of its solubility, powdery texture, or reduced sweetness (50%) compared to more common sugars.

Inositol is also used as a stand-in film prop for cocaine in filmmaking.[42]

Nutritional sources

myo-Inositol is naturally present in a variety of foods, although tables of food composition do not always distinguish between lecithin, the relatively bioavailable lipid form and the biounavailable phytate/phosphate form.[43] Foods containing the highest concentrations of myo-inositol and its compounds include fruits, beans, grains, and nuts.[43] Fruits in particular, especially oranges and cantaloupe, contain the highest amounts of myo-inositol.[44] It is also present in beans, nuts, and grains, however, these contain large amounts of myo-inositol in the phytate form, which is not bioavailable without transformation by phytase enzymes. Bacillus subtilis, the microorganism which produces the fermented food natto, produces phytase enzymes that may convert phytic acid to a more bioavailable form of inositol polyphosphate in the gut.[45] Additionally, Bacteroides species in the gut secrete vesicles containing an active enzyme which converts the phytate molecule into bioavailable phosphorus and inositol polyphosphate, which is an important signaling molecule in the human body.[46]

myo-Inositol can also be found as an ingredient in energy drinks,[47] either in conjunction with or as a substitute for glucose.[48]

In humans, myo-inositol is naturally made from glucose-6-phosphate through enzymatic dephosphorylation.[44]

Production

As of 2021, the main industrial process for the production of myo-inositol (mostly in China and Japan) started with phytate (IP6) extracted from the soaking water resulting from corn and rice bran processing. After purification, the phytate is hydrolized, and myo-inositol is separated by crystallization.

Another route is microbial fermentation of carbohydrates by various organisms, such as the fungus Neurospora crassa (Beadle and Tatum, 1945), Candida boidini (Shirai et al., 1997), Saccharomyces cerevisiae (Culbertson et al., 1976), Escherichia coli (Hansen, 1999). Alternatively, enzyme extracts from microbial cultures can be used in vitro to obtain myo-inositol from various substrates, including glucose, sucrose, starch, xylose, and amylose.

External links

Notes and References

  1. Croze . M. L. . Soulage . C. O. . Potential role and therapeutic interests of myo-inositol in metabolic diseases . Biochimie . 95 . 10 . 1811–1827 . October 2013 . 23764390 . 10.1016/j.biochi.2013.05.011.
  2. Book: Parthasarathy . L. K. . Seelan . R. S. . Tobias . C. . Casanova . M. F. . Parthasarathy . R. N. . Mammalian inositol 3-phosphate synthase: its role in the biosynthesis of brain inositol and its clinical use as a psychoactive agent . 39 . 293–314 . 2006 . 978-0-387-27599-4 . Subcellular Biochemistry . 17121280 . 10.1007/0-387-27600-9_12.
  3. 2018 . Showell . M. G. . Mackenzie-Proctor . R. . Jordan . V. . Hodgson . R. . Farquhar . C. . Inositol for subfertile women with polycystic ovary syndrome . The Cochrane Database of Systematic Reviews . 2018 . 12 . CD012378 . 30570133 . 10.1002/14651858.CD012378.pub2 . 6516980.
  4. Book: Basic Neurochemistry: Molecular, Cellular and Medical Aspects . Brady . S. . Siegel . G. . Albers . R. W. . Price . D. . 2005 . Academic Press . 9780080472072 . 348 . en .
  5. Carlomagno . G. . Unfer . V. . Roseff . S. . The D-chiro-inositol paradox in the ovary . Fertility and Sterility . 95 . 8 . 2515–6 . 2011 . 21641593 . 10.1016/j.fertnstert.2011.05.027 . free.
  6. Kiani AK, Paolacci S, Bertelli M . From Myo-inositol to D-chiro-inositol molecular pathways . . 25 . 5 . 2390–2402 . 2021 . 33755975 . 10.26355/eurrev_202103_25279.
  7. Web site: Phytic acid . phytochemicals.info . 2018-05-02 . usurped . https://web.archive.org/web/20180307183152/http://www.phytochemicals.info/phytochemicals/phytic-acid.php . 7 March 2018.
  8. Klopfenstein . T. J. . Angel . R. . Cromwell . G. . Erickson . G. E. . Fox . D. G. . Parsons . C. . Satter . L. D. . Sutton . A. L. . Baker . D. H. . July 2002 . Animal diet modification to decrease the potential for nitrogen and phosphorus pollution . Council for Agricultural Science and Technology . 21 . live . https://web.archive.org/web/20110611164403/http://digitalcommons.unl.edu/animalscifacpub/518/ . 2011-06-11.
  9. Hurrell . R. F. . Influence of vegetable protein sources on trace element and mineral bioavailability . The Journal of Nutrition . 133 . 9 . 2973S–2977S . September 2003 . 12949395 . 10.1093/jn/133.9.2973S . free.
  10. Book: Phytates . Toxicants Occurring Naturally in Foods . Committee on Food Protection . Food and Nutrition Board . National Research Council . National Academy of Sciences . 1973 . 978-0-309-02117-3 . 363–371 . https://books.google.com/books?id=lIsrAAAAYAAJ&pg=PA363 .
  11. Web site: Phytic acid . phytochemicals.info . 2017-10-02 . usurped . https://web.archive.org/web/20170806114101/http://www.phytochemicals.info/phytochemicals/phytic-acid.php . 2017-08-06.
  12. Larner . J. . D-chiro-Inositol—its functional role in insulin action and its deficit in insulin resistance . International Journal of Experimental Diabetes Research . 3 . 1 . 47–60 . 2002 . 11900279 . 10.1080/15604280212528 . 2478565.
  13. Gerasimenko . J. V. . Flowerdew . S. E. . Voronina . S. G. . Sukhomlin . T. K. . Tepikin . A. V. . Petersen . O. H. . Gerasimenko . O. V. . Bile acids induce Ca2+ release from both the endoplasmic reticulum and acidic intracellular calcium stores through activation of inositol trisphosphate receptors and ryanodine receptors . The Journal of Biological Chemistry . 281 . 52 . 40154–40163 . December 2006 . 17074764 . 10.1074/jbc.M606402200 . free.
  14. Kukuljan . M. . Vergara . L. . Stojilković . S. S. . Modulation of the kinetics of inositol 1,4,5-trisphosphate-induced [Ca<sup>2+</sup>]i oscillations by calcium entry in pituitary gonadotrophs . Biophysical Journal . 72 . 2 Pt 1 . 698–707 . February 1997 . 1997BpJ....72..698K . 9017197 . 10.1016/S0006-3495(97)78706-X . 1185595.
  15. Rapiejko . P. J. . Northup . J. K. . Evans . T. . Brown . J. E. . Malbon . C. C. . G-proteins of fat-cells. Role in hormonal regulation of intracellular inositol 1,4,5-trisphosphate . The Biochemical Journal . 240 . 1 . 35–40 . November 1986 . 3103610 . 10.1042/bj2400035 . 1147372.
  16. Shen . X. . Xiao . H. . Ranallo . R. . Wu . W.-H. . Wu . C. . Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates . Science . 299 . 5603 . 112–114 . January 2003 . 2003Sci...299..112S . 12434013 . 10.1126/science.1078068 . free . 8381889 .
  17. Steger . D. J. . Haswell . E. S. . Miller . A. L. . Wente . S. R. . O'Shea . E. K. . Regulation of chromatin remodeling by inositol polyphosphates . Science . 299 . 5603 . 114–116 . January 2003 . 2003Sci...299..114S . 12434012 . 10.1126/science.1078062 . 1458531.
  18. Book: Biochemistry . Mathews . C. K. . 2000 . Benjamin Cummings . Van Holde . K. E. . Ahern . K. G. . 978-0805330663 . 3rd . San Francisco, CA . 855 . 42290721.
  19. News: Laurence . W. L. . Corn by-product yields explosive . The New York Times . April 17, 1936 . 7 . https://web.archive.org/web/20130512022104/http://select.nytimes.com/gst/abstract.html?res=F50B15F9395D13728DDDAE0994DC405B868FF1D3&scp=1 . 2013-05-12.
  20. Book: Ledgard, J. . The Preparatory Manual of Explosives . 2007 . 366 . Ledgard . 9780615142906 .
  21. Chatterjee . J. . Majumder . A. L. . September 2010 . Salt-induced abnormalities on root tip mitotic cells of Allium cepa: prevention by inositol pretreatment . Protoplasma . 245 . 1–4 . 165–172 . 20559853 . 10.1007/s00709-010-0170-4 . 9128286.
  22. 3 . Sani . Gabriele . Gualtieri . Ida . Paolini . Marco . Bonanni . Luca . Spinazzola . Edoardo . Maggiora . Matteo . Pinzone . Vito . Brugnoli . Roberto . Angeletti . Gloria . Girardi . Paolo . Rapinesi . Chiara . Kotzalidis . Georgios D. . Drug Treatment of Trichotillomania (Hair-Pulling Disorder), Excoriation (Skin-picking) Disorder, and Nail-biting (Onychophagia) . Current Neuropharmacology . 25 July 2019 . 17 . 8 . 775–786 . 30892151 . 10.2174/1570159X17666190320164223 . 7059154.
  23. Tabrizi R, Ostadmohammadi V, Asemi Z . The effects of inositol supplementation on lipid profiles among patients with metabolic diseases: a systematic review and meta-analysis of randomized controlled trials . . 17 . 1 . 123 . 2018 . 29793496 . 10.1186/s12944-018-0779-4 . free . 5968598.
  24. Benvenga S, Nordio M, Laganà AS, Unfer V . The Role of Inositol in Thyroid Physiology and in Subclinical Hypothyroidism Management . . 12 . 662582 . 2021 . 34040582 . 10.3389/fendo.2021.662582 . free . 8143049.
  25. Howlett . Alexandra . Ohlsson . Arne . Plakkal . Nishad . 8 July 2019 . Inositol in preterm infants at risk for or having respiratory distress syndrome . The Cochrane Database of Systematic Reviews . 7 . 7 . CD000366 . 1469-493X . 31283839 . 10.1002/14651858.CD000366.pub4 . 6613728.
  26. Cavalli . P. . Ronda . E. . Myoinositol: the bridge (PONTI) to reach a healthy pregnancy . International Journal of Endocrinology . 2017 . 5846286 . 2017 . 28243254 . 10.1155/2017/5846286 . free . 5274721.
  27. Inositol is an effective and safe treatment in polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials . 2023 . Greff . Dorina . Juhász . Anna E. . Váncsa . Szilárd . Váradi . Alex . Sipos . Zoltán . Szinte . Julia . Park . Sunjune . Hegyi . Péter . Nyirády . Péter . Ács . Nándor . Várbíró . Szabolcs . Horváth . Eszter M. . Reproductive Biology and Endocrinology . 21 . 1 . 10 . 36703143 . 10.1186/s12958-023-01055-z . free . 9878965.
  28. Monastra . G. . Unfer . V. . Harrath . A. H. . Bizzarri . M. . Combining treatment with myo-inositol and D-chiro-inositol (40:1) is effective in restoring ovary function and metabolic balance in PCOS patients . Gynecological Endocrinology . 33 . 1 . 1–9 . January 2017 . 27898267 . 10.1080/09513590.2016.1247797 . 11573/944617 . 24836559.
  29. Nordio . M. . Proietti . E. . The combined therapy with myo-inositol and D-chiro-inositol reduces the risk of metabolic disease in PCOS overweight patients compared to myo-inositol supplementation alone . European Review for Medical and Pharmacological Sciences . 16 . 5 . 575–581 . May 2012 . 22774396.
  30. Unfer . V. . etal . Effects of myo-inositol in women with PCOS: a systematic review of randomized controlled trials . Gynecological Endocrinology . 28 . 7 . 509–15 . 2012 . 22296306 . 10.3109/09513590.2011.650660 . 24582338.
  31. Ciotta . L. . etal . Effects of myo-inositol supplementation on oocyte's quality in PCOS patients: a double blind trial . European Review for Medical and Pharmacological Sciences . 15 . 5 . 509–14 . 2011 . 21744744.
  32. Papaleo . E. . etal . Contribution of myo-inositol to reproduction . European Journal of Obstetrics & Gynecology and Reproductive Biology . 147 . 2 . 120–3 . 2009 . 19800728 . 10.1016/j.ejogrb.2009.09.008.
  33. Isabella . R. . Raffone . E. . Does ovary need D-chiro-inositol? . Journal of Ovarian Research . 5 . 1 . 2012 . 14 . 22587479 . 10.1186/1757-2215-5-14 . free . 3447676.
  34. Moghetti . P. . Insulin resistance and polycystic ovary syndrome . Current Pharmaceutical Design . 2016 . 22 . 36 . 5526–5534 . 27510482 . 10.2174/1381612822666160720155855.
  35. Facchinetti . F. . etal . Results from the International Consensus Conference on myo-Inositol and D-chiro-Inositol in Obstetrics and Gynecology: the link between metabolic syndrome and PCOS . European Journal of Obstetrics & Gynecology and Reproductive Biology . 195 . 72–6 . 2015 . 26479434 . 10.1016/j.ejogrb.2015.09.024.
  36. Colazingari . S. . etal . The combined therapy myo-inositol plus D-chiro-inositol, rather than D-chiro-inositol, is able to improve IVF outcomes: results from a randomized controlled trial . Archives of Gynecology and Obstetrics . 288 . 6 . 1405–11 . 2013 . 23708322 . 10.1007/s00404-013-2855-3 . 45611717.
  37. Kamenov . Z. . etal . Ovulation induction with myo-inositol alone and in combination with clomiphene citrate in polycystic ovarian syndrome patients with insulin resistance . Gynecological Endocrinology . 31 . 2 . 131–5 . 2015 . 25259724 . 10.3109/09513590.2014.964640 . 24469378.
  38. González . F. . Inflammation in polycystic ovary syndrome: underpinning of insulin resistance and ovarian dysfunction . Steroids . 77 . 4 . 300–5 . 2012 . 22178787 . 10.1016/j.steroids.2011.12.003 . 3309040.
  39. Monastra . G. . etal . alpha-Lactalbumin effect on myo-inositol intestinal absorption: in vivo and in vitro. . Current Drug Delivery . 15 . 9 . 1305–1311 . 2018 . 29745333 . 10.2174/1567201815666180509102641 . 13691602.
  40. Oliva . M. M. . etal . Effects of myo-inositol plus alpha-lactalbumin in myo-inositol-resistant PCOS women . Journal of Ovarian Research . 11 . 1 . 2018 . 38 . 29747700 . 10.1186/s13048-018-0411-2 . free . 5944130.
  41. Web site: Inositol, Nerve guidance, Cutting agent manufacturer . Tianyu Feed Additive . 2013-07-21 . dead . https://web.archive.org/web/20140908220315/http://www.feedadditivechina.com/6-16-inositol.html . 2014-09-08.
  42. Golianopoulos . T. . Drug doubles: What actors actually toke, smoke and snort on camera . Wired . 2012-05-12 . 2012-05-14 . dead . https://web.archive.org/web/20120514154908/http://www.wired.com/underwire/2012/05/pl_drugs/ . 2012-05-14.
  43. Clements . R. S. . Darnell . B. . myo-Inositol content of common foods: development of a high-myo-inositol diet . The American Journal of Clinical Nutrition . 33 . 9 . 1954–1967 . September 1980 . 7416064 . 10.1093/ajcn/33.9.1954 . free . 4442333.
  44. Awuchi . Chinaza . Sugar Alcohols: Chemistry, Production, Health Concerns and Nutritional Importance of Mannitol, Sorbitol, Xylitol, and Erythritol . International Journal of Advanced Academic Research . 5 . 11 . 1954–1967 . 2017 .
  45. Borgi MA, Boudebbouze S, Mkaouar H, Maguin E, Rhimi M . Bacillus phytases: Current status and future prospects . Bioengineered . 5 . 4 . 233–236 . 2015 . 25946551 . 10.1080/21655979.2015.1048050 . 4601277.
  46. Stentz R, Osborne S, Horn N, Li AW, Hautefort I, Bongaerts R, Rouyer M, Bailey P, Shears SB, Hemmings AM, Brearley CA, Carding SR . A Bacterial Homolog of a Eukaryotic Inositol Phosphate Signaling Enzyme Mediates Cross-kingdom Dialog in the Mammalian Gut . Cell Reports . 6 . 4 . 646–656 . 27 February 2014 . 24529702 . 10.1016/j.celrep.2014.01.021 . free . 3969271.
  47. 2019-08-01 . Risk assessment of energy drinks with focus on cardiovascular parameters and energy drink consumption in Europe . Food and Chemical Toxicology . en . 130 . 109–121 . 0278-6915 . Ehlers . Anke . Marakis . Georgios . Lampen . Alfonso . Hirsch-Ernst . Karen Ildico . 31112702 . 10.1016/j.fct.2019.05.028 . free.
  48. DiSalvo . David . We Know About Caffeine in Energy Drinks Like Monster, But What About the Other Ingredients? . Forbes . en . 2020-12-22.