W
\boldsymbol{B}
The strain energy density function for an incompressible Mooney–Rivlin material is[3] [4]
W=C1(\bar{I}1-3)+C2(\bar{I}2-3),
where
C1
C2
\barI1
\barI2
\bar\boldsymbolB=(\det\boldsymbolB)-1/3\boldsymbolB
\boldsymbolB
\begin{align} \bar{I}1&=J-2/3~I1, I1=
2 | |
λ | |
1 |
+
2+ | |
λ | |
2 |
2, | |
λ | |
3 |
\\ \bar{I}2&=J-4/3~I2, I2=
2 | |
λ | |
1 |
2 | |
λ | |
2 |
+
2 | |
λ | |
2 |
2 | |
λ | |
3 |
+
2 | |
λ | |
3 |
2 | |
λ | |
1 |
\end{align}
\boldsymbol{F}
J=\det(\boldsymbol{F})=λ1λ2λ3
J=1
The Mooney–Rivlin model is a special case of the generalized Rivlin model (also called polynomial hyperelastic model[6]) which has the form
W=
N | |
\sum | |
p,q=0 |
Cpq(\bar{I}1-
p~(\bar{I} | |
3) | |
2 |
-3)q+
M | |
\sum | |
m=1 |
1 | |
Dm |
~(J-1)2m
C00=0
Cpq
Dm
N=1,C01=C2,C11=0,C10=C1,M=1
W=C01~(\bar{I}2-3)+C10~(\bar{I}1-3)+
1 | |
D1 |
~(J-1)2
C01=0
For consistency with linear elasticity in the limit of small strains, it is necessary that
\kappa=2/D1~;~~\mu=2~(C01+C10)
\kappa
\mu
The Cauchy stress in a compressible hyperelastic material with a stress free reference configuration is given by
\boldsymbol{\sigma}=\cfrac{2}{J}\left[\cfrac{1}{J2/3
\cfrac{\partial{W}}{\partial\bar{I}1}=C1~;~~\cfrac{\partial{W}}{\partial\bar{I}2}=C2~;~~\cfrac{\partial{W}}{\partialJ}=
2 | |
D1 |
(J-1)
\boldsymbol{\sigma}=\cfrac{2}{J}\left[\cfrac{1}{J2/3
p:=-\tfrac{1}{3}tr(\boldsymbol{\sigma})=-
\partialW | |
\partialJ |
=-
2 | |
D1 |
(J-1).
\boldsymbol{\sigma}=-p~\boldsymbol{I}+\cfrac{1}{J}\left[\cfrac{2}{J2/3
The above equation is often written using the unimodular tensor
\bar{\boldsymbol{B}}=J-2/3\boldsymbol{B}
\boldsymbol{\sigma}=-p~\boldsymbol{I}+\cfrac{1}{J}\left[2\left(C1+\bar{I}1~C2\right)\bar{\boldsymbol{B}}- 2~C2~\bar{\boldsymbol{B}} ⋅ \bar{\boldsymbol{B}}-\cfrac{2}{3}\left(C1\bar{I}1+2C2\bar{I}2\right)\boldsymbol{I}\right].
J=1
p=0
\bar\boldsymbolB=\boldsymbolB
\boldsymbol{\sigma}=2\left(C1+I1~C2\right)\boldsymbol{B}- 2C2~\boldsymbol{B} ⋅ \boldsymbol{B}-\cfrac{2}{3}\left(C1I1+2C2I2\right)\boldsymbol{I}.
Since
\detJ=1
\boldsymbol{B}-1=\boldsymbol{B} ⋅ \boldsymbol{B}-I1~\boldsymbol{B}+I2~\boldsymbol{I}.
Hence, the Cauchy stress can be expressed as
\boldsymbol{\sigma}=-p*~\boldsymbol{I}+2C1~\boldsymbol{B}-
-1 | |
2C | |
2~\boldsymbol{B} |
p*:=\tfrac{2}{3}(C1~I1-C2~I2).
In terms of the principal stretches, the Cauchy stress differences for an incompressible hyperelastic material are given by
\sigma11-\sigma33=λ1~\cfrac{\partial{W}}{\partialλ1}-λ3~\cfrac{\partial{W}}{\partialλ3}~;~~ \sigma22-\sigma33=λ2~\cfrac{\partial{W}}{\partialλ2}-λ3~\cfrac{\partial{W}}{\partialλ3}
W=C1(λ
2 | |
1 |
+
2+ | |
λ | |
2 |
2 | |
λ | |
3 |
-3)+C2(λ
2 | |
1 |
2 | |
λ | |
2 |
+
2 | |
λ | |
2 |
2 | |
λ | |
3 |
+
2 | |
λ | |
3 |
2 | |
λ | |
1 |
-3)~;~~λ1λ2λ3=1
λ1\cfrac{\partial{W}}{\partialλ1}=2C1λ
2 | |
1 |
+2C2λ
2) | |
3 |
~;~~ λ2\cfrac{\partial{W}}{\partialλ2}=2C1λ
2 | |
2 |
+2C2λ
2) | |
3 |
~;~~ λ3\cfrac{\partial{W}}{\partialλ3}=2C1λ
2 | |
3 |
+2C2λ
2) | |
2 |
λ1λ2λ3=1
\begin{align} λ1\cfrac{\partial{W}}{\partialλ1}&=2C1λ
2 | |
1 |
+2C2\left(\cfrac{1}{λ
2}\right) | |
2 |
~;~~ λ2\cfrac{\partial{W}}{\partialλ2}=2C1λ
2 | |
2 |
+2C2\left(\cfrac{1}{λ
2}\right) | |
1 |
\\ λ3\cfrac{\partial{W}}{\partialλ3}&=2C1λ
2 | |
3 |
+2C2\left(\cfrac{1}{λ
2}\right) | |
1 |
\end{align}
\sigma11-\sigma33=2C1(λ
2) | |
3 |
-2C2\left(\cfrac{1}{λ
2}\right)~;~~ | |
3 |
\sigma22-\sigma33=2C1(λ
2) | |
3 |
-2C2\left(\cfrac{1}{λ
2}\right) | |
3 |
For the case of an incompressible Mooney–Rivlin material under uniaxial elongation,
λ1=λ
λ2=λ3=1/\sqrt{λ}
\begin{align} \sigma11-\sigma33&=
2-\cfrac{1}{λ}\right) | |
2C | |
1\left(λ |
2} | |
-2C | |
2\left(\cfrac{1}{λ |
-λ\right)\\ \sigma22-\sigma33&=0 \end{align}
In the case of simple tension,
\sigma22=\sigma33=0
\sigma11=\left(2C1+\cfrac{2C2}{λ}\right)\left(λ2-\cfrac{1}{λ}\right)
\boldsymbol{T}
\alpha
T11=\left(2C1+
2C2 | |
\alpha |
\right)\left(\alpha2-\alpha-1\right)
eng | |
T | |
11 |
=T11\alpha2\alpha3=\cfrac{T11
eng | |
T | |
11 |
=\left(2C1+
2C2 | |
\alpha |
\right)\left(\alpha-\alpha-2\right)
* | |
T | |
11 |
:=
eng | |
\cfrac{T | |
11 |
* | |
T | |
11 |
=2C1+2C2\beta~.
* | |
T | |
11 |
\beta
C2
* | |
T | |
11 |
C1
In the case of equibiaxial tension, the principal stretches are
λ1=λ2=λ
λ3=1/λ2
\sigma11-\sigma33=\sigma22-\sigma33=
2-\cfrac{1}{λ | |
2C | |
1\left(λ |
4}\right)-
2} | |
2C | |
2\left(\cfrac{1}{λ |
-λ4\right)
A pure shear deformation can be achieved by applying stretches of the form [7]
λ1=λ~;~~λ2=\cfrac{1}{λ}~;~~λ3=1
\sigma11-\sigma33=
2-1) | |
2C | |
1(λ |
-
2}-1\right) | |
2C | |
2\left(\cfrac{1}{λ |
~;~~ \sigma22-\sigma33=
2} | |
2C | |
1\left(\cfrac{1}{λ |
-1\right)-
2 | |
2C | |
2(λ |
-1)
\sigma11-\sigma22=2(C1+C
2 | |
2)\left(λ |
-\cfrac{1}{λ2}\right)
I1=
2 | |
λ | |
1 |
+
2 | |
λ | |
2 |
+
2 | |
λ | |
3 |
=λ2+\cfrac{1}{λ2}+1~;~~ I2=
2} | |
\cfrac{1}{λ | |
1 |
+
2} | |
\cfrac{1}{λ | |
2 |
+
2} | |
\cfrac{1}{λ | |
3 |
=\cfrac{1}{λ2}+λ2+1
I1=I2
The deformation gradient for a simple shear deformation has the form[7]
\boldsymbol{F}=\boldsymbol{1}+\gamma~e1 ⊗ e2
e1,e2
\gamma=λ-\cfrac{1}{λ}~;~~λ1=λ~;~~λ2=\cfrac{1}{λ}~;~~λ3=1
\boldsymbol{F}=\begin{bmatrix}1&\gamma&0\ 0&1&0\ 0&0&1\end{bmatrix}~;~~ \boldsymbol{B}=\boldsymbol{F} ⋅ \boldsymbol{F}T=\begin{bmatrix}1+\gamma2&\gamma&0\ \gamma&1&0\ 0&0&1\end{bmatrix}
\boldsymbol{B}-1=\begin{bmatrix}1&-\gamma&0\ -\gamma&1+\gamma2&0\ 0&0&1\end{bmatrix}
\boldsymbol{\sigma}=\begin{bmatrix}-p*+2(C1-C2)+2C
2 | |
1\gamma |
&2(C1+C2)\gamma&0\ 2(C1+C2)\gamma&-p*+2(C1-C2)-
2 | |
2C | |
2\gamma |
&0\ 0&0&-p*+2(C1-C2) \end{bmatrix}
\mu=2(C1+C2)
\mu
Elastic response of rubber-like materials are often modeled based on the Mooney–Rivlin model. The constants
C1,C2
\det\bar\boldsymbolB=1