Mixed Poisson distribution explained

mixed Poisson distribution
Type:mass
Notation:

\operatorname{Pois}(λ)\underset{λ}\wedge\pi(λ)

Parameters:

λ\in(0,infty)

Support:

k\inN0

Pdf:
infty
\int\limits
0
λk
k!

e\pi(λ)

Mean:
infty
\int\limits
0

λ\pi(λ)dλ

Variance:
infty
\int\limits
0
2)
(λ+(λ-\mu
\pi)

\pi(λ)dλ

Skewness:

l(\mu\pi+\sigma

2r)
\pi

-3/2

3
l[\int\limits
\pi)

+

2]
3(λ-\mu
\pi)

\pi(λ)d{λ}+\mu\pir]

Pgf:

M\pi(z-1)

Mgf:
t-1)
M
\pi(e
, with

M\pi

the MGF of
Char:
it
M
\pi(e

-1)

A mixed Poisson distribution is a univariate discrete probability distribution in stochastics. It results from assuming that the conditional distribution of a random variable, given the value of the rate parameter, is a Poisson distribution, and that the rate parameter itself is considered as a random variable. Hence it is a special case of a compound probability distribution. Mixed Poisson distributions can be found in actuarial mathematics as a general approach for the distribution of the number of claims and is also examined as an epidemiological model. It should not be confused with compound Poisson distribution or compound Poisson process.[1]

Definition

A random variable X satisfies the mixed Poisson distribution with density (λ) if it has the probability distribution[2]

\operatorname{P}(X=k)=

infty
\int
0
λk
k!

e\pi(λ)dλ.

If we denote the probabilities of the Poisson distribution by qλ(k), then

\operatorname{P}(X=k)=

infty
\int
0

qλ(k)\pi(λ)dλ.

Properties

In the following let

\mu\pi=\int\limits

infty
0

λ\pi(λ)dλ

be the expected value of the density

\pi(λ)

and
2
\sigma
\pi

=

infty
\int\limits
0
2
(λ-\mu
\pi)

\pi(λ)dλ

be the variance of the density.

Expected value

The expected value of the mixed Poisson distribution is

\operatorname{E}(X)=\mu\pi.

Variance

For the variance one gets[2]

\operatorname{Var}(X)=\mu\pi+\sigma

2.
\pi

Skewness

The skewness can be represented as

\operatorname{v}(X)=l(\mu\pi+\sigma

2r)
\pi

-3/2

3\pi(λ)d{λ}+\mu
l[\int
\pir].

Characteristic function

The characteristic function has the form

\varphiX(s)=

is
M
\pi(e

-1).

Where

M\pi

is the moment generating function of the density.

Probability generating function

For the probability generating function, one obtains[2]

mX(s)=M\pi(s-1).

Moment-generating function

The moment-generating function of the mixed Poisson distribution is

MX(s)=

s-1).
M
\pi(e

Examples

Table of mixed Poisson distributions

mixing distributionmixed Poisson distribution[3]
DiracPoisson
gamma, Erlangnegative binomial
exponentialgeometric
inverse GaussianSichel
PoissonNeyman
generalized inverse GaussianPoisson-generalized inverse Gaussian
generalized gammaPoisson-generalized gamma
generalized ParetoPoisson-generalized Pareto
inverse-gammaPoisson-inverse gamma
log-normalPoisson-log-normal
LomaxPoisson–Lomax
ParetoPoisson–Pareto
Pearson’s family of distributionsPoisson–Pearson family
truncated normalPoisson-truncated normal
uniformPoisson-uniform
shifted gammaDelaporte
beta with specific parameter valuesYule

Literature

References

  1. Willmot . Gord . 1986 . Mixed Compound Poisson Distributions . ASTIN Bulletin . en . 16 . S1 . S59–S79 . 10.1017/S051503610001165X . 0515-0361. free .
  2. Willmot . Gord . 2014-08-29 . Mixed Compound Poisson Distributions . Astin Bulletin . 16 . 5–7 . 10.1017/S051503610001165X. 17737506 . free .
  3. Karlis . Dimitris . Xekalaki . Evdokia . 2005 . Mixed Poisson Distributions . International Statistical Review . 73 . 1 . 35–58 . 10.1111/j.1751-5823.2005.tb00250.x . 25472639 . 53637483 . 0306-7734.