mixed Poisson distribution | |||||||||||||||||||
Type: | mass | ||||||||||||||||||
Notation: | \operatorname{Pois}(λ)\underset{λ}\wedge\pi(λ) | ||||||||||||||||||
Parameters: | λ\in(0,infty) | ||||||||||||||||||
Support: | k\inN0 | ||||||||||||||||||
Pdf: |
e-λ\pi(λ)dλ | ||||||||||||||||||
Mean: |
λ\pi(λ)dλ | ||||||||||||||||||
Variance: |
\pi(λ)dλ | ||||||||||||||||||
Skewness: | l(\mu\pi+\sigma
-3/2
+
\pi(λ)d{λ}+\mu\pir] | ||||||||||||||||||
Pgf: | M\pi(z-1) | ||||||||||||||||||
Mgf: |
M\pi | ||||||||||||||||||
Char: |
-1) |
A mixed Poisson distribution is a univariate discrete probability distribution in stochastics. It results from assuming that the conditional distribution of a random variable, given the value of the rate parameter, is a Poisson distribution, and that the rate parameter itself is considered as a random variable. Hence it is a special case of a compound probability distribution. Mixed Poisson distributions can be found in actuarial mathematics as a general approach for the distribution of the number of claims and is also examined as an epidemiological model. It should not be confused with compound Poisson distribution or compound Poisson process.[1]
A random variable X satisfies the mixed Poisson distribution with density (λ) if it has the probability distribution[2]
\operatorname{P}(X=k)=
infty | |
\int | |
0 |
λk | |
k! |
e-λ\pi(λ)dλ.
If we denote the probabilities of the Poisson distribution by qλ(k), then
\operatorname{P}(X=k)=
infty | |
\int | |
0 |
qλ(k)\pi(λ)dλ.
In the following let
\mu\pi=\int\limits
infty | |
0 |
λ\pi(λ)dλ
\pi(λ)
2 | |
\sigma | |
\pi |
=
infty | |
\int\limits | |
0 |
2 | |
(λ-\mu | |
\pi) |
\pi(λ)dλ
The expected value of the mixed Poisson distribution is
\operatorname{E}(X)=\mu\pi.
\operatorname{Var}(X)=\mu\pi+\sigma
2. | |
\pi |
The skewness can be represented as
\operatorname{v}(X)=l(\mu\pi+\sigma
2r) | |
\pi |
-3/2
3\pi(λ)d{λ}+\mu | |
l[\int | |
\pir]. |
The characteristic function has the form
\varphiX(s)=
is | |
M | |
\pi(e |
-1).
Where
M\pi
For the probability generating function, one obtains[2]
mX(s)=M\pi(s-1).
The moment-generating function of the mixed Poisson distribution is
MX(s)=
s-1). | |
M | |
\pi(e |
mixing distribution | mixed Poisson distribution[3] | |
---|---|---|
Dirac | Poisson | |
gamma, Erlang | negative binomial | |
exponential | geometric | |
inverse Gaussian | Sichel | |
Poisson | Neyman | |
generalized inverse Gaussian | Poisson-generalized inverse Gaussian | |
generalized gamma | Poisson-generalized gamma | |
generalized Pareto | Poisson-generalized Pareto | |
inverse-gamma | Poisson-inverse gamma | |
log-normal | Poisson-log-normal | |
Lomax | Poisson–Lomax | |
Pareto | Poisson–Pareto | |
Pearson’s family of distributions | Poisson–Pearson family | |
truncated normal | Poisson-truncated normal | |
uniform | Poisson-uniform | |
shifted gamma | Delaporte | |
beta with specific parameter values | Yule |