Mittag-Leffler polynomials should not be confused with Mittag-Leffler function.
In mathematics, the Mittag-Leffler polynomials are the polynomials gn(x) or Mn(x) studied by .
Mn(x) is a special case of the Meixner polynomial Mn(x;b,c) at b = 0, c = -1.
The Mittag-Leffler polynomials are defined respectively by the generating functions
\displaystyle
infty | |
\sum | |
n=0 |
n | ||
g | := | |
n(x)t |
1 | l( | |
2 |
1+t | |
1-t |
r)x
\displaystyle
infty | |
\sum | |
n=0 |
M | :=l( | ||||
|
1+t | |
1-t |
r)x=(1+t)x(1-t)-x=\exp(2xartanht).
\displaystyle
infty | |
\sum | |
n=1 |
infty | |
\sum | |
m=1 |
my | |
g | |
n(m)x |
n=
xy | |
(1-x)(1-x-y-xy) |
.
The first few polynomials are given in the following table. The coefficients of the numerators of the
gn(x)
Mn(x)
n | gn(x) | Mn(x) | ||||
---|---|---|---|---|---|---|
0 |
| 1 | ||||
1 | x | 2x | ||||
2 | x2 | 4x2 | ||||
3 |
| 8x3+4x | ||||
4 |
| 16x4+32x2 | ||||
5 |
| 32x5+160x3+48x | ||||
6 |
| 64x6+640x4+736x2 | ||||
7 |
| 128x7+2240x5+6272x3+1440x | ||||
8 |
| 256x8+7168x6+39424x4+33792x2 | ||||
9 |
| 512x9+21504x7+204288x5+418816x3+80640x | ||||
10 |
| 1024x10+61440x8+924672x6+3676160x4+2594304x2 |
The polynomials are related by
Mn(x)=2 ⋅ {n!}gn(x)
gn(1)=1
n\geqslant1
g2k(
12)=g | ( | |
2k+1 |
| |||||||||||||
Explicit formulas are
gn(x)=
n | |
\sum | |
k=1 |
2k-1\binom{n-1}{n-k}\binomxk=
n-1 | |
\sum | |
k=0 |
2k\binom{n-1}{k}\binomx{k+1}
gn(x)=
n-1 | |
\sum | |
k=0 |
\binom{n-1}k\binom{k+x}n
gn(m)=
12\sum | |
k |
m\binommk\binom{n-1+m-k}{m-1}=
12\sum | |
k |
min(n,m)
m{n+m-k}\binom{n+m-k}{k,n-k,m-k} | |
ngn(m)=mgm(n)
Mn(x)=(n-1)!\sum
n | |
k=1 |
k2k\binomnk\binomxk
Mn(x)=\sum
n | |
k=1 |
2k\binomnk(n-1)n-k(x)k
(x)n=n!\binomxn=x(x-1) … (x-n+1)
gn(x)=x ⋅ {}2F1(1-n,1-x;2;2).
As stated above, for
m,n\inN
ngn(m)=mgm(n)
The polynomials
Mn(x)
Mn(x)=2xMn-1(x)+(n-1)(n-2)Mn-2(x)
M-1(x)=0
M0(x)=1
Mn+1(x)=2x
\lfloorn/2\rfloor | |
\sum | |
k=0 |
n! | |
(n-2k)! |
Mn-2k(x)
M0(x)=1
gn(x)
\displaystyle(1) gn(x+1)-gn-1(x+1)=gn(x)+gn-1(x)
\displaystyle(2) (n+1)gn+1(x)-(n-1)gn-1(x)=2xgn(x)
(3) xl(gn(x+1)-gn(x-1)r)=2ngn(x)
(4) gn+1(m)=gn
m-1 | |
(m)+2\sum | |
k=1 |
gn(k)=gn(1)+gn(2)+ … +gn(m)+gn(m-1)+ … +gn(1)
Concerning recursion formula (3), the polynomial
gn(x)
x(f(x+1)-f(x-1))=2nf(x)
f(1)=1
x\inN
x
n
gn(x)
x
The table of the initial values of
gn(m)
g5(3)=51=33+8+10
ngn(m)=mgm(n)
3 ⋅ 44=4 ⋅ 33
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | |
3 | 3 | 9 | 19 | 33 | 51 | 73 | 99 | 129 | ||
4 | 4 | 16 | 44 | 96 | 180 | 304 | 476 | |||
5 | 5 | 25 | 85 | 225 | 501 | 985 | ||||
6 | 6 | 36 | 146 | 456 | 1182 | |||||
7 | 7 | 49 | 231 | 833 | ||||||
8 | 8 | 64 | 344 | |||||||
9 | 9 | 81 | ||||||||
10 | 10 | |||||||||
For
m,n\inN
infty | |
\int | |
-infty |
gn(-iy)gm(iy) | dy= | |
y\sinh\piy |
1{2n}\delta | |
mn |
.
gn
m
n
Being a Sheffer sequence of binomial type, the Mittag-Leffler polynomials
Mn(x)
Mn(x+y)=\sum
n\binom | |
k=0 |
nkMk(x)Mn-k(y)
Based on the representation as a hypergeometric function, there are several ways of representing
gn(z)
|z|<1
z
(26) gn(z)=
\sin(\piz) | |
2\pi |
\int
1 | |
-1 |
tn-1l(
1+t | |
1-t |
r)zdt
(27) gn(z)=
\sin(\piz) | |
2\pi |
infty | |
\int | |
-infty |
euz
| ||||||
\sinhu |
du
(32) gn(z)=
1\pi\int | |
0 |
\pi\cotz(
u2) | ( | |
\cos |
\piz | |
2) |
\cos(nu)du
(33) gn(z)=
1\pi\int | |
0 |
\pi\cotz(
u2) | ( | |
\sin |
\piz | |
2) |
\sin(nu)du
(34) gn(z)=
1{2\pi}\int | |
0 |
2\pi(1+eit)z(2+eit)n-1e-intdt
There are several families of integrals with closed-form expressions in terms of zeta values where the coefficients of the Mittag-Leffler polynomials occur as coefficients. All those integrals can be written in a form containing either a factor
\tan\pm
\tanh\pm
n
1. For instance, define for
n\geqslantm\geqslant2
I(n,m):=\int
1\dfrac{artanh | |
0 |
nx}{xm}dx =\int
1log | |
0 |
n/2l(\dfrac{1+x}{1-x}r)\dfrac{dx}{xm} =\int
infty | |
0 |
zn\dfrac{\cothm-2z}{\sinh2z}dz.
(1) I(n,m)=
n! | |
2n-1 |
\zetan+1~gm-1(
1{\zeta} | |
) |
\zeta
\zetak
\zeta(k)
g | ||||
|
I(n,7)= | n! |
2n-1 |
23~\zeta(n-1)+20~\zeta(n-3)+2~\zeta(n-5) | |
45 |
n\geqslant7
2. Likewise take for
n\geqslantm\geqslant2
J(n,m):=\int
infty\dfrac{arcoth | |
1 |
nx}{xm}dx=\int
inftylog | |
1 |
n/2l(\dfrac{x+1}{x-1}r)\dfrac{dx}{xm} =\int
infty | |
0 |
zn\dfrac{\tanhm-2z}{\cosh2z}dz.
In umbral notation, where after expanding,
ηk
η(k):=\left(1-21-k\right)\zeta(k)
(2) J(n,m)=
n! | |
2n-1 |
ηn+1~gm-1(
1{η} | |
) |
3. The following holds for
n\geqslantm
\zeta
η
η(1):=ln2
(3)
\pi/2 | |
\int\limits | |
0 |
xn | |
\tanmx |
dx=\cosl(
m | \pir) | |
2 |
(\pi/2)n+1 | +\cosl( | |
n+1 |
m-n-1 | |
2 |
\pir)
n!~m | |
2n |
\zetan+2
n | |||||
g | \cosl( | ||||
|
m-v-1 | \pir) | |
2 |
n!~m~\pin-v | |
(n-v)!~2n |
ηn+2
g | ||||
|
n\geqslantm\geqslant2
infty | |
\int\limits | |
0 |
\arctannx | |
xm |
dx=
\pi/2 | |
\int\limits | |
0 |
xn | |
\tanmx |
dx+
\pi/2 | |
\int\limits | |
0 |
xn | |
\tanm-2x |
dx.
n\geqslantm\geqslant2
infty\dfrac{\tanh | |
K(n,m):=\int\limits | |
0 |
n(x)}{xm}dx
If
n+m
hk:=
| ||||
(-1) |
(k-1)!(2k-1)\zeta(k) | |
2k-1\pik-1 |
hk
hk
(4)
infty\dfrac{\tanh | |
K(n,m):=\int\limits | |
0 |
n(x)}{xm}dx= \dfrac{n ⋅ 2m-1
k
K(5,3)=- | 2 |
3 |
(3h3+10h5+2h
|
+310
\zeta(5) | -1905 | |
\pi4 |
\zeta(7) | |
\pi6 |
,
K(6,2)= | 4 |
15 |
(23h3+20h5+2h7), K(6,4)=
4 | |
45 |
(23h5+20h7+2h9).
5. If
n+m
infty\dfrac{\tanh | |
\int\limits | |
0 |
3(x)}{x2}dx
k+1 | |
s | |
k:=η'(-k)=2 |
\zeta(-k)ln2-(2k+1-1)\zeta'(-k)
sk=
\zeta(-k) | |
\zeta'(-k) |
η(-k)+\zeta(-k)η(1)-η(-k)η(1)
K(n,m)
sk
sk
(5)
infty\dfrac{\tanh | |
K(n,m)=\int\limits | |
0 |
n(x)}{x
| ||||
(-s)m-2gn(s)
K(5,4)= | 8 |
9 |
(3s3+10s5+2s7), K(6,3)=-
8 | |
15 |
(23s3+20s5+2s7), K(6,5)=-
8 | |
45 |
(23s5+20s7+2s9).
\zeta' | (s)+ | |
\zeta |
\zeta' | (1-s)=log\pi- | |
\zeta |
1 | |
2 |
\Gamma' | \left( | |
\Gamma |
s | \right)- | |
2 |
1 | |
2 |
\Gamma' | \left( | |
\Gamma |
1-s | |
2 |
\right)
sk
\zeta'(2j) | |
\zeta(2j) |
K(5,4)= | 8 |
9 |
(3s3+10s5+2s
- | ||||||||
|
16 | ln2+3 | |
315 |
\zeta'(4) | -20 | |
\zeta(4) |
\zeta'(6) | +17 | |
\zeta(6) |
\zeta'(8) | |
\zeta(8) |
\right\}.
6. For
n<m
K(n,m)
xn-m
x\searrow0
(6)
infty\left(\dfrac{\tanh | |
K(n-1,n)-K(n,n+1)=\int\limits | |
0 |
n-1(x)}{xn