Michael Saks (mathematician) explained

Michael Ezra Saks is an American mathematician. He is currently the Department Chair of the Mathematics Department at Rutgers University (2017–) and from 2006 until 2010 was director of the Mathematics Graduate Program at Rutgers University. Saks received his Ph.D. from the Massachusetts Institute of Technology in 1980 after completing his dissertation titled Duality Properties of Finite Set Systems[1] under his advisor Daniel J. Kleitman.

A list of his publications and collaborations may be found at DBLP.

In 2016 he became a Fellow of the Association for Computing Machinery.[2] [3]

Research

Saks' research in computational complexity theory, combinatorics, and graph theory has contributed to the study of lower bounds in order theory, randomized computation, and space–time tradeoff.

In 1984, Saks and Jeff Kahn showed that there exist a tight information-theoretical lower bound for sorting under partially ordered information up to a multiplicative constant.[4]

In http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.5448&rep=rep1&type=pdf the first super-linear lower bound for the noisy broadcast problem was proved. In a noisy broadcast model,

n+1

processors

P0,P1,\ldots,Pn

are assigned a local input bit

xi

. Each processor may perform a noisy broadcast to all other processors where the received bits may be independently flipped with a fixed probability. The problem is for processor

P0

to determine

f(x1,x2,\ldots,xn)

for some function

f

. Saks et al. showed that an existing protocol by Gallager was indeed optimal by a reduction from a generalized noisy decision tree and produced a

\Omega(nlog(n))

lower bound on the depth of the tree that learns the input.[5]

In 2003, P. Beame, Saks, X. Sun, and E. Vee published the first time–space lower bound trade-off for randomized computation of decision problems was proved.[6]

Positions

Saks holds positions in the following journal editorial boards:

Selected publications

Notes and References

  1. Saks . Michael Ezra . 1980 . Duality Properties of Finite Set Systems . Ph.D. . . 7447661.
  2. .
  3. Web site: Recipients. awards.acm.org. en. 2018-07-01.
  4. Book: 10.1145/800057.808694. Every poset has a good comparison. Proceedings of the sixteenth annual ACM symposium on Theory of computing - STOC '84. 299. 1984. Kahn . J. . Saks . M. . 978-0897911337. 17374296.
  5. R. G. . Gallager . Finding parity in simple broadcast networks . IEEE Transactions on Information Theory . 34 . 2. 176–180 . 1988 . 10.1109/18.2626. 10.1.1.422.3311 .
  6. 10.1145/636865.636867. Time–space trade-off lower bounds for randomized computation of decision problems. Journal of the ACM. 50. 2. 154. 2003. Beame . P. . Saks . M. . Sun . X. . Vee . E. . 10.1.1.16.8696. 9459178.