Mesorhizobium mediterraneum explained

Mesorhizobium mediterraneum is a bacterium from the genus Mesorhizobium, which was isolated from root nodule of the Chickpea (Cicer arietinum) in Spain.[1] [2] The species Rhizobium mediterraneum was subsequently transferred to Mesorhizobium mediterraneum.[3] This species, along with many other closely related taxa, have been found to promote production of chickpea and other crops worldwide by forming symbiotic relationships.

Symbiosis with Chickpea

As a typical species nodulating the chickpea root, M. mediterraneum forms a mutualistic symbiosis with the legume crop. The associations between M. mediterraneum and its legume hosts have been reported to be mediated by type IV secretion system (T4SS) genes such as traG[4] and improved by the addition of the clpB chaperone gene.[5] The invasion of legume by Mesorhizobium mediterraneum was also documented to involve production of hydrolytic enzymes such as xyloglucanase.[6]

Several isolates of M. mediterraneum enhanced the growth of chickpea by efficiently mobilizing phosphorus from insoluble phosphates.[7] [8] [9] The species could help chickpea increase production and protein content even under a moderate water deficit.[10] However, it has also been reported that nodulation by the species on chickpea was reduced by water deficiency.[11] Dual-inoculation of Glomus mosseae and M. mediterraneum helped Lathyrus sativus resist sulfate salinity stress,[12] while the growth of M.mediterraneum was also found to be intolerant of salt stress of 200 mM NaCl.[13] M. mediterraneum helped chickpea resist osmotic stress by enhancing nodular peroxidase and ascorbate peroxidase activities.[14]

Besides chickpea, Mesorhizobium mediterraneum and/or closely related taxa have also been found to form symbiotic relationships with many other crops and plants, including wild liquorice (Astragalus glycyphyllos),[15] lentil (Lens culinaris Medik),[16] the South African legume species of the genus Lessertia,[17] black locust (Robinia pseudoacacia),[18] Lotus tenuis,[19] Caragana,[20] and Astragalus cicer.[21]

Mesorhizobium mediterraneum, along with many other species, contributed to diverse rhizobia nodulating chickpea worldwide, such as Northeast China,[22] [23] [24] India,[25] [26] the North-West Indo Gangetic Plains,[27] Ethiopia,[28] Iran,[29] and Portugal.[30] [31] These findings contribute to valuable pools of isolates that hold promises for increasing chickpea production in these soil types.

External links

Notes and References

  1. http://www.lgcstandards-atcc.org/products/all/51670.aspx?geo_country=de ATCC
  2. https://www.uniprot.org/uniprot/A9X4W5 UniProt
  3. 10.1099/00207713-47-3-895. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense To mesorhizobium gen. nov. International Journal of Systematic Bacteriology. 47. 3. 895. 1997. Jarvis . B. D. W.. Van Berkum . P.. Chen . W. X.. Nour . S. M.. Fernandez . M. P.. Cleyet-Marel . J. C.. Gillis . M.. free.
  4. Web site: Paço. A.. da-Silva. J. R.. Eliziário. F.. Brígido. C.. Oliveira. S.. Alexandre. A.. 2019-01-30. traG Gene Is Conserved across Mesorhizobium spp. Able to Nodulate the Same Host Plant and Expressed in Response to Root Exudates. 2020-09-20. BioMed Research International. en.
  5. Paço. Ana. Brígido. Clarisse. Alexandre. Ana. Mateos. Pedro F.. Oliveira. Solange. 2016-02-04. Martinez-Abarca. Francisco. The Symbiotic Performance of Chickpea Rhizobia Can Be Improved by Additional Copies of the clpB Chaperone Gene. PLOS ONE. en. 11. 2. e0148221. 10.1371/journal.pone.0148221. 1932-6203. 4741418. 26845770. 2016PLoSO..1148221P. free.
  6. Aranda. E.. Sampedro. I.. Tribak. M.. Arriagada. C.. Ocampo. J.A.. Garcia-Romera. I.. 2005. Xyloglucanase production by rhizobial species. Symbiosis. 38. 3. 277–284.
  7. Rivas. R.. Peix. A.. Mateos. P. F.. Trujillo. M. E.. Martínez-Molina. E.. Velázquez. E.. 2006-10-05. Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils. Plant and Soil. en. 287. 1–2. 23–33. 10.1007/s11104-006-9062-y. 410829. 0032-079X.
  8. Zafar. M.. Ahmed. N.. Mustafa. G.. Zahir. Z. A.. Simms. E. L.. 2017-06-01. Molecular and biochemical characterization of rhizobia from chickpea (Cicer arietinum). Pakistan Journal of Agricultural Sciences. en. 54. 2. 373–381. 10.21162/PAKJAS/17.5874. 0552-9034. free.
  9. Peix. A.. Rivas-Boyero. A.A.. Mateos. P.F.. Rodriguez-Barrueco. C.. Martı́nez-Molina. E.. Velazquez. E.. January 2001. Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions . Soil Biology and Biochemistry. en. 33. 1. 103–110. 10.1016/S0038-0717(00)00120-6.
  10. Oliveira. Rui S. Carvalho. Patrícia. Marques. Guilhermina. Ferreira. Luís. Nunes. Mafalda. Rocha. Inês. Ma. Ying. Carvalho. Maria F. Vosátka. Miroslav. Freitas. Helena. October 2017. Increased protein content of chickpea (Cicer arietinum L.) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions: Increased protein content of inoculated chickpea under water deficit. Journal of the Science of Food and Agriculture. en. 97. 13. 4379–4385. 10.1002/jsfa.8201. 28071807. 10400.22/13871. free.
  11. Ben Romdhane. Samir. Trabelsi. Mustapha. Aouani. Mohamed Elarbi. de Lajudie. Philippe. Mhamdi. Ridha. December 2009. The diversity of rhizobia nodulating chickpea (Cicer arietinum) under water deficiency as a source of more efficient inoculants . Soil Biology and Biochemistry. en. 41. 12. 2568–2572. 10.1016/j.soilbio.2009.09.020.
  12. Jin. Liang. Sun. Xiangwei. Wang. Xiaojuan. Shen. Yuying. Hou. Fujiang. Chang. Shenghua. Wang. Chang. March 2010. Synergistic interactions of arbuscular mycorrhizal fungi and rhizobia promoted the growth of Lathyrus sativus under sulphate salt stress. Symbiosis. en. 50. 3. 157–164. 10.1007/s13199-010-0058-2. 7737058. 0334-5114.
  13. Mhamdi. Rakia. Nouairi. Issam. ben Hammouda. Thouraya. Mhamdi. Ridha. Mhadhbi. Haythem. April 2015. Growth capacity and biochemical mechanisms involved in rhizobia tolerance to salinity and water deficit: Free living rhizobia response to abiotic constraints. Journal of Basic Microbiology. en. 55. 4. 451–461. 10.1002/jobm.201400451. 25546228. 26026232.
  14. Mhadhbi. Haythem. Jebara. Moez. Zitoun. Adel. Limam. Férid. Aouani. Mohamed Elarbi. July 2008. Symbiotic effectiveness and response to mannitol-mediated osmotic stress of various chickpea–rhizobia associations. World Journal of Microbiology and Biotechnology. en. 24. 7. 1027–1035. 10.1007/s11274-007-9571-8. 84906589. 0959-3993.
  15. Gnat. Sebastian. Małek. Wanda. Oleńska. Ewa. Wdowiak-Wróbel. Sylwia. Kalita. Michał. Rogalski. Jerzy. Wójcik. Magdalena. 2016-04-01. Multilocus sequence analysis supports the taxonomic position of Astragalus glycyphyllos symbionts based on DNA–DNA hybridization. International Journal of Systematic and Evolutionary Microbiology. en. 66. 4. 1906–1912. 10.1099/ijsem.0.000862. 26704062. 1466-5026. free.
  16. Sami. Dhaoui. Mokhtar. Rejili. Peter. Mergaert. Mohamed. Mars. August 2016. Sessitsch. Angela. Rhizobium leguminosarum symbiovar trifolii, Ensifer numidicus and Mesorhizobium amorphae symbiovar ciceri (or Mesorhizobium loti) are new endosymbiotic bacteria of Lens culinaris Medik. FEMS Microbiology Ecology. en. 92. 8. fiw118. 10.1093/femsec/fiw118. 27267929. 1574-6941. free.
  17. Gerding. Macarena. O’Hara. Graham William. Bräu. Lambert. Nandasena. Kemanthie. Howieson. John Gregory. September 2012. Diverse Mesorhizobium spp. with unique nodA nodulating the South African legume species of the genus Lessertia. Plant and Soil. en. 358. 1–2. 385–401. 10.1007/s11104-012-1153-3. 15730533. 0032-079X.
  18. Wei. Gehong. Chen. Weimin. Zhu. Wenfei. Chen. Chun. Young. J. Peter W.. Bontemps. Cyril. June 2009. Invasive Robinia pseudoacacia in China is nodulated by Mesorhizobium and Sinorhizobium species that share similar nodulation genes with native American symbionts: Mesorhizobium and Sinorhizobium share symbiotic genes. FEMS Microbiology Ecology. en. 68. 3. 320–328. 10.1111/j.1574-6941.2009.00673.x. 19416352. free.
  19. Estrella. Mar�a Julia. Mu�oz. Socorro. Soto. Mar�a Jos�. Ruiz. Oscar. Sanju�n. Juan. 2009-02-15. Genetic Diversity and Host Range of Rhizobia Nodulating Lotus tenuis in Typical Soils of the Salado River Basin (Argentina). Applied and Environmental Microbiology. en. 75. 4. 1088–1098. 10.1128/AEM.02405-08. 0099-2240. 2643590. 19074602. 2009ApEnM..75.1088E.
  20. Chen. Wen Feng. Guan. Su Hua. Zhao. Chun Tian. Yan. Xue Rui. Man. Chao Xin. Wang. En Tao. Chen. Wen Xin. 2008-04-21. Different Mesorhizobium species associated with Caragana carry similar symbiotic genes and have common host ranges: Caragana mesorhizobia had similar symbiotic genes. FEMS Microbiology Letters. en. 283. 2. 203–209. 10.1111/j.1574-6968.2008.01167.x. 18422620. free.
  21. Wdowiak. Sylwia. Małek. Wanda. 2000-08-21. Numerical Analysis of Astragalus cicer Microsymbionts. Current Microbiology. 41. 2. 142–148. 10.1007/s002840010108. 10856381. 5947654. 0343-8651.
  22. Zhang. Junjie. Yang. Xu. Guo. Chen. de Lajudie. Philippe. Singh. Raghvendra Pratap. Wang. Entao. Chen. Wenfeng. 2017-01-01. Mesorhizobium muleiense and Mesorhizobium gsp. nov. are symbionts of Cicer arietinum L. in alkaline soils of Gansu, Northwest China. Plant and Soil. en. 410. 1. 103–112. 10.1007/s11104-016-2987-x. 35331036. 1573-5036.
  23. Zhang. Jun Jie. Yu. Tao. Lou. Kai. Mao. Pei Hong. Wang. En Tao. Chen. Wen Feng. Chen. Wen Xin. October 2014. Genotypic alteration and competitive nodulation of Mesorhizobium muleiense against exotic chickpea rhizobia in alkaline soils . Systematic and Applied Microbiology. en. 37. 7. 520–524. 10.1016/j.syapm.2014.07.004. 25123757.
  24. Zhang. Jun Jie. Lou. Kai. Jin. Xiang. Mao. Pei Hong. Wang. En Tao. Tian. Chang Fu. Sui. Xin Hua. Chen. Wen Feng. Chen. Wen Xin. April 2012. Distinctive Mesorhizobium populations associated with Cicer arietinum L. in alkaline soils of Xinjiang, China. Plant and Soil. en. 353. 1–2. 123–134. 10.1007/s11104-011-1014-5. 14447209. 0032-079X.
  25. Sharma. Anu. Bandamaravuri. Kishore Babu. Sharma. Anjana. Arora. Dillip K.. October 2017. Phenotypic and molecular assessment of chickpea rhizobia from different chickpea cultivars of India. 3 Biotech. en. 7. 5. 327. 10.1007/s13205-017-0952-x. 2190-572X. 5602792. 28955624.
  26. Rai. Rhitu. Dash. Prasanta K.. Mohapatra. Trilochan. Singh. Aqbal. 2012. Phenotypic and molecular characterization of indigenous rhizobia nodulating chickpea in India. Indian Journal of Experimental Biology. 50. 5. 340–350. 22803324.
  27. Singh. Raghvendra Pratap. Manchanda. Geetanjali. Singh. Ram Nageena. Srivastava. Alok Kumar. Dubey. R. C.. January 2016. Selection of alkalotolerant and symbiotically efficient chickpea nodulating rhizobia from North-West Indo Gangetic Plains: Exploration of alkalotolerant and symbiotically efficient rhizobia. Journal of Basic Microbiology. en. 56. 1. 14–25. 10.1002/jobm.201500267. 26377641. 25697707.
  28. Tena. Wondwosen. Wolde-Meskel. Endalkachew. Degefu. Tulu. Walley. Fran. August 2017. Genetic and phenotypic diversity of rhizobia nodulating chickpea (Cicer arietinum L.) in soils from southern and central Ethiopia. Canadian Journal of Microbiology. en. 63. 8. 690–707. 10.1139/cjm-2016-0776. 28499096. 0008-4166. 1807/78015. free.
  29. Rouhrazi. Kiomars. Khodakaramian. Gholam. December 2015. Phenotypic and genotypic diversity of root-nodulating bacteria isolated from chickpea (Cicer arietinum L.) in Iran. Annals of Microbiology. en. 65. 4. 2219–2227. 10.1007/s13213-015-1062-9. 16074998. 1590-4261. free.
  30. Alexandre. Ana. Brígido. Clarisse. Laranjo. Marta. Rodrigues. Sérgio. Oliveira. Solange. November 2009. Survey of Chickpea Rhizobia Diversity in Portugal Reveals the Predominance of Species Distinct from Mesorhizobium ciceri and Mesorhizobium mediterraneum. Microbial Ecology. en. 58. 4. 930–941. 10.1007/s00248-009-9536-6. 19468700. 0095-3628. 10174/2102. 39363767. free.
  31. Laranjo. Marta. Machado. Jorge. Young. J.Peter W.. Oliveira. Solange. April 2004. High diversity of chickpea Mesorhizobium species isolated in a Portuguese agricultural region. FEMS Microbiology Ecology. en. 48. 1. 101–107. 10.1016/j.femsec.2003.12.015. 19712435. free. 10174/2105. free.