Megaherbivore Explained

Megaherbivores (Greek μέγας megas "large" and Latin herbivora "herbivore"[1]) are large herbivores that can exceed 1000kg (2,000lb) in weight. The earliest herbivores to reach such sizes like the parieasaurs appeared in the Permian period. During most of the Mesozoic, the megaherbivore niche was largely dominated by dinosaurs up until their extinction during the Cretaceous–Paleogene extinction event. After this period, small mammalian species evolved into large herbivores in the Paleogene. As part of the Late Pleistocene megafauna extinctions, 80% of megaherbivore species became extinct, with megaherbivores becoming entirely extinct in Europe, Australia and the Americas. Recent megaherbivores include elephants, rhinos, hippos, and giraffes. There are nine extant species of terrestrial megaherbivores living in Africa and Asia. The African bush elephant is the largest extant species.

Extant megaherbivores are keystone species in their environment. They defoliate the landscape and spread a greater number of seeds than other frugivores. Extant megaherbivores, like most large mammals, are K-selected species. They are characterized by their large size, relative immunity to predation, their effect on plant species, and their dietary tolerance.

Definition

Megaherbivores are large herbivores that weigh more than 1 ton when fully grown. They include both marine and terrestrial herbivores.[1] A type of megafauna (>45 kg), they are the largest animals on land.

Evolution

Permian

Megaherbivores first evolved in the early Permian (300 mya). The earliest megaherbivores were synapsids; they became somewhat rare after the Permian–Triassic extinction event.[2] [3] Taxa mainly consisted of dicynodonts,[4] and pareiasaurs.[5] The exact cause of the extinction remains unknown. It is thought that the main cause of extinction was the flood basalt volcanic eruptions that created the Siberian Traps,[6] which released sulfur dioxide and carbon dioxide, resulting in euxinia,[7] elevating global temperatures,[8] and acidifying the oceans.[9]

Triassic

Lisowicia was the last dicynodont that lived and became extinct in the Late Triassic. Some scientists have proposed that there was never a Triassic–Jurassic extinction event, but others argue that the extinctions occurred earlier. Nevertheless, flood basalts are thought to be the primary driver of the extinctions towards the end of the Triassic.[10] [11]

Jurassic

The taxonomic structure then switched to sauropodomorphs. Other taxa included stegosaurs and ankylosaurs.[12] The change in taxonomy approximately occurred at the same time with the divergence of predominant vegetation and with extinctions. New taxa may have caused competitive exclusion (i.e. predominating and removing another taxa), or they may have adopted the ecological niche of extinct groups.[13]

Cretaceous

From the Triassic to the Cretaceous, a diverse assemblage of megaherbivorous dinosaurs, such as sauropods,[14] occupied different ecological niches. Based on their dentition, ankylosaurs may have mainly consumed succulent plants, as opposed to nodosaurs, which were mainly browsers. It is thought that ceratopsids fed on rugged vegetation, due to their jaw being designed for a crushing effect. Studies on hadrosaur dentition concluded that they primarily fed on fruits.[15]

Paleogene

Following the Cretaceous–Paleogene mass extinction, megaherbivore dinosaurs were extirpated from the face of the earth. One mechanism is thought to have played a major role: an extraterrestrial impact event in the Yucatán Peninsula.[16] For about 25 million years, the earth was void of large terrestrial herbivores that weighed more than 1 ton. After this period, small mammalian species evolved into large herbivores. Herbivorous mammals had evolved to megaherbivore size across every continent around 40 mya.[17] The largest of these animals were Paraceratheriidae and Proboscidea.[18] Other taxa included Brontotheriidae.[19] The Sirenia, aquatic megaherbivores, such as Dugongidae, Protosirenidae, and Prorastomidae were present in the Eocene.[20] Megaherbivores inhabited every major landmass in the Cenozoic and Pleistocene before the arrival of humans.

Pleistocene

See main article: Late Pleistocene extinctions.

There were around 50 different species by the Late Pleistocene:

Diprotodon, the largest marsupial to ever exist, was present across the entire Australian continent by the Late Pleistocene.[21] Additionally, megaherbivores like glyptodonts were grazing herbivores, that possessed no incisor or canine teeth, but had cheek teeth that would have been able to grind up tough vegetation. They inhabited habitats of South and North America.[22] Ground sloths were herbivores, with some being browsers,[23] others grazers,[24] and some intermediate between the two as mixed feeders.[25] Fossilized specimens were primarily found in South and North America, with one specimen being found as far north as Alaska.[26] Mammoths, like modern day elephants, had hypsodont molars. These features allowed mammoths to live an expansive life because of the availability of grasses and trees.[27] Today, nine of the 50 species persist. The Americas saw the worst decline in megaherbivores, with all 27 species going extinct.[28]

The Quaternary Extinction Event is an event where many species of megafauna (particularly mammals) went extinct. This event caused the disappearances of megaherbivores on most continents on Earth.[29] Climate change and the arrival of humans are considered likely causes of the extinctions.[30] It is thought that humans hunted megaherbivores to extinction, which then led to the extinction of the carnivores and scavengers which had preyed upon those animals.[31] [32] [33] Scientists have proposed that increasingly extreme weather—hotter summers and colder winters—referred to as "continentality", or related changes in rainfall caused the extinctions.[34]

Recent

There are nine extant species of megaherbivores, found in Africa and Asia.[35] [36] They include elephants, rhinos, hippos and giraffes.[37] [38] Elephants belong to the order Proboscidea; an order that has been around since the late Paleocene.[39] Hippopotamuses are the closest living relatives to cetaceans; soon after the common ancestor of whales and hippos diverged from even-toed ungulates, the lineages of cetaceans and hippopotamuses split apart.[40] [41] Giraffidae are a sister taxon to Antilocapridae, with an estimated split of more than 20 million years ago, according to a 2019 genome study.[42] Rhinoceroses may originate from Hyrachyus, an animal whose remains date back to the late Eocene.

Megaherbivores and other large herbivores are becoming less common throughout their natural distribution, which is having an impact on animal species within the ecosystem. This is mainly attributed to the destruction of their natural environment, agriculture, overhunting, and human invasion of their habitats.[43] [44] As a consequence of their slow reproductive rate and the preference for targeting larger species, overexploitation poses the greatest threat to megaherbivores. As time progresses, it is thought that the situation will only worsen.

Ecology of recent megaherbivory

Browsers and grazers

Living species exhibit the following adaptations: they have dietary tolerance, a strong effect on vegetation and with the exception of calves, face little threat from predators.[45] [46] [47]

Elephants and Indian rhinoceroses exhibit both grazing and browsing feeding habits. The hippopotamus and white rhinoceros prefer grazing herbivory, while giraffes and the three other rhinoceros species most often select browsing herbivory.[48] Mammalian megaherbivores predominantly consume graminoids. They prefer eating the leaves and stem of the plant, as well as its fruits. They also exhibit both foregut and hindgut fermentation, with rhinos, hippos, and elephants displaying the former and giraffes displaying the latter. Their metabolic rate is lethargic, and as a result, digestion is slowed. During this prolonged digestion period, high-fiber plant matter is disintegrated.

Due to their size, megaherbivores can defoliate the landscape; because of this, they are considered keystone species in their environment.[49] Megaherbivores affect the composition of plant species, which alters the movement and exchange of inorganic and organic matter back into the production of matter. They can open up areas through feeding behavior, which over time clears vegetation, including invasive alien plants. The number of seeds that megaherbivores spread is greater than that of other frugivores.[50] [51] Additionally, megaherbivore grazers, like the white rhino, have a profound impact on short grass. In one study, short grass became more infrequent after the elimination of white rhinos; this event affected the smaller grazers who had relied on them to regulate the short grass population.

In a 2018 study, it was concluded that megaherbivores were not affected by the "landscape of fear," a landscape in which prey avoid certain hot-spot predation areas, thereby altering predator-frightened trophic cascades. Their feces were most apparent in closed, dense areas, indicating that they distribute resources to risky areas in this "landscape of fear".[52]

Interspecific interactions

Most megaherbivore species are too big and powerful for most predators to kill. Calves are, however, targeted by several predator species. Giraffes are also susceptible to predation, and it is not rare for lions to hunt adult giraffes in some places. The young are especially vulnerable, with a quarter to half of giraffe calves not reaching adulthood.[53] [54] In Chobe National Park, lions have been recorded hunting young and sub-adult elephants.[55] Tigers are another known predator of young elephants.[56] Hippo calves may sometimes be prey items for lions, spotted hyenas and Nile crocodiles.[57]

Giraffes may flee or act in a non-aggressive manner, while white rhinos typically do not react to the presence of predators. Black and Indian rhinoceroses, elephants, and hippopotamuses on the other hand, react strongly to predators.

Adaptations of extant megaherbivores

Size

Elephants are the largest members, weighing between 2.5 and 6.0 tons. Indian rhinos, white rhinos and hippos usually weigh between 1.4 and 2.3 tons. The Javan and black rhino average 1–1.3 tons in weight. Giraffes are the smallest members, with a general weight range of 0.8–1.2 tons.[58]

K-selection

Extant megaherbivores are K-selected species, meaning they have high life expectancies, slow population growth, large offspring, lengthy pregnancies, and low mortality rates. They have selected slow reproduction to enhance their survival chances, and as a result, increase their lifespan.[59] [60] Their large size offers protection from predators, but at the same, it decreases the degree at which they reproduce due to restricted food sources.[61] [62] This slow population growth (elephants, for example, grow at a rate of 6–7%), indicates that populations may be drastically reduced if predation pressures are too great. In stable environments, K-selection predominates as the ability to compete successfully for limited resources, and populations of K-selected organisms typically are very constant in number and close to the maximum that the environment can bear.

Reproduction

When females enter estrus, males will attempt to attract and mate with them. These breeding opportunities may be influenced by the hierarchical system of males. Giraffes and elephants mate for a relatively short time, while rhinos and hippos have a mating session lasting an extended period of time. Females have long gestation periods, between 8 and 22 months. Intervals between births vary between species, but the overall range is 1.3 to 4.5 years.

They usually give birth to a single calf that is heavily reliant on females for food and protection. As they get older, the calf begins weaning while still suckling. When they reach juvenility, they are able to fend for themselves, but only to a certain extent. Females typically separate from their offspring by chasing them. Despite this, females may continue to interact with their progeny even after weaning.

Lifespan and mortality

Hippopotamuses and rhinoceroses can live to be 40 years old, while elephants can live longer than 60 years. Giraffes have a lifespan of around 25 years.

Around 2 to 5% of adult megaherbivores die each year. Males are more likely than females to die from wounds sustained during disputes. Occasionally, in times of drought, populations may significantly reduce, with calves being the most impacted during such times.

See also

Notes and References

  1. Web site: Megaherbivore . 11 January 2024 . Collins Dictionary . Tropical seagrass meadows support a diversity of grazers spanning the meso-, macro-, and megaherbivore scales..
  2. Sulej . Tomasz . Niedźwiedzki . Grzegorz . 2019-01-04 . An elephant-sized Late Triassic synapsid with erect limbs . Science . 363 . 6422 . 78–80 . 10.1126/science.aal4853 . 30467179 . 2019Sci...363...78S . 0036-8075.
  3. Viglietti . Pia A. . Benson . Roger B. J. . Smith . Roger M. H. . Botha . Jennifer . Kammerer . Christian F. . Skosan . Zaituna . Butler . Elize . Crean . Annelise . Eloff . Bobby . Kaal . Sheena . Mohoi . Joël . Molehe . William . Mtalana . Nolusindiso . Mtungata . Sibusiso . Ntheri . Nthaopa . 2021-04-27 . Evidence from South Africa for a protracted end-Permian extinction on land . Proceedings of the National Academy of Sciences . en . 118 . 17 . 10.1073/pnas.2017045118 . free . 0027-8424 . 8092562 . 33875588. 2021PNAS..11817045V .
  4. Fiorelli . Lucas E. . Ezcurra . Martín D. . Hechenleitner . E. Martín . Argañaraz . Eloisa . Taborda . Jeremías R. A. . Trotteyn . M. Jimena . von Baczko . M. Belén . Desojo . Julia B. . 2013-11-28 . The oldest known communal latrines provide evidence of gregarism in Triassic megaherbivores . Scientific Reports . en . 3 . 1 . 3348 . 10.1038/srep03348 . 24287957 . 3842779 . 2013NatSR...3E3348F . 2045-2322.
  5. Boitsova . Elizaveta A . Skutschas . Pavel P . Sennikov . Andrey G . Golubev . Valeriy K . Masuytin . Vladimir V . Masuytina . Olga A . 2019-07-05 . Bone histology of two pareiasaurs from Russia (Deltavjatia rossica and Scutosaurus karpinskii) with implications for pareiasaurian palaeobiology . Biological Journal of the Linnean Society . 10.1093/biolinnean/blz094 . 0024-4066.
  6. Burgess . Seth D. . Bowring . Samuel A. . 2015-08-28 . High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction . Science Advances . 1 . 7 . e1500470 . 10.1126/sciadv.1500470 . 2375-2548 . 4643808 . 26601239. 2015SciA....1E0470B .
  7. Hulse . D . Lau . K.V. . Sebastiaan . J.V. . Arndt . S . Meyer . K.M. . Ridgwell . A. End-Permian marine extinction due to temperature-driven nutrient recycling and euxinia . Nat Geosci . 28 Oct 2021 . 14 . 11 . 862–867 . 10.1038/s41561-021-00829-7 . 2021NatGe..14..862H . 240076553 .
  8. Wu . Yuyang . Chu . Daoliang . Tong . Jinnan . Song . Haijun . Dal Corso . Jacopo . Wignall . Paul B. . Song . Huyue . Du . Yong . Cui . Ying . 2021-04-09 . Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction . Nature Communications . 12 . 1 . 2137 . 10.1038/s41467-021-22298-7 . 33837195 . 8035180 . 2041-1723.
  9. Erwin . Douglas H. . 1990 . Carboniferous-Triassic gastropod diversity patterns and the Permo-Triassic mass extinction . Paleobiology . 16 . 2 . 187–203 . 10.1017/s0094837300009878 . 1990Pbio...16..187E . 87789173 . 0094-8373.
  10. Web site: Barras . Colin . 8 January 2024 . The mass extinction that might never have happened . 2024-01-08 . New Scientist.
  11. Racki . Grzegorz . Lucas . Spencer G. . 2020-04-20 . Timing of dicynodont extinction in light of an unusual Late Triassic Polish fauna and Cuvier's approach to extinction . Historical Biology . en . 32 . 4 . 452–461 . 10.1080/08912963.2018.1499734 . 2020HBio...32..452R . 91926999 . 0891-2963.
  12. Wyenberg-Henzler . Taia . 2022 . Ecomorphospace occupation of large herbivorous dinosaurs from Late Jurassic through to Late Cretaceous time in North America . PeerJ . 10 . e13174 . 10.7717/peerj.13174 . free . 2167-8359 . 9009330 . 35433123.
  13. Button . David J . Barrett . Paul . Rayfield . Emily . November 2016 . Comparative cranial myology and biomechanics of Plateosaurus and Camarasaurus and evolution of the sauropod feeding apparatus . Palaeontology . 59 . 6 . 887–913 . 10.1111/pala.12266 . 2016Palgy..59..887B . 53619160 . 0031-0239.
  14. Grinham . Luke R. . August 2023 . Cenozoic megaherbivore emergence . Nature Ecology & Evolution . en . 7 . 8 . 1173 . 10.1038/s41559-023-02100-1 . 37258656 . 2023NatEE...7.1173G . 259000968 . 2397-334X.
  15. Mallon . Jordan C. . Anderson . Jason S. . 2014-06-11 . The Functional and Palaeoecological Implications of Tooth Morphology and Wear for the Megaherbivorous Dinosaurs from the Dinosaur Park Formation (Upper Campanian) of Alberta, Canada . PLOS ONE . 9 . 6 . e98605 . 10.1371/journal.pone.0098605 . free . 24918431 . 4053334 . 2014PLoSO...998605M . 1932-6203.
  16. Brusatte . Stephen L. . Butler . Richard J. . Barrett . Paul M. . Carrano . Matthew T. . Evans . David C. . Lloyd . Graeme T. . Mannion . Philip D. . Norell . Mark A. . Peppe . Daniel J. . Upchurch . Paul . Williamson . Thomas E. . 2015-07-28 . The extinction of the dinosaurs . Biological Reviews . English . 90 . 2 . 628–642 . 10.1111/brv.12128 . 25065505 . 1464-7931. 20.500.11820/176e5907-26ec-4959-867f-0f2e52335f88 . free .
  17. Onstein . Renske E. . Kissling . W. Daniel . Linder . H. Peter . 2022-04-13 . The megaherbivore gap after the non-avian dinosaur extinctions modified trait evolution and diversification of tropical palms . Proceedings of the Royal Society B: Biological Sciences . 289 . 1972 . 10.1098/rspb.2021.2633 . 35414237 . 9006001 . 0962-8452.
  18. Clauss . M. . Frey . R. . Kiefer . B. . Lechner-Doll . M. . Loehlein . W. . Polster . C. . Rossner . G. E. . Streich . W. J. . 2003-06-01 . The maximum attainable body size of herbivorous mammals: morphophysiological constraints on foregut, and adaptations of hindgut fermenters . Oecologia . 136 . 1 . 14–27 . 10.1007/s00442-003-1254-z . 12712314 . 2003Oecol.136...14C . 206989975 . 0029-8549.
  19. Sanisidro . Oscar . Mihlbachler . Matthew C. . Cantalapiedra . Juan L. . 2023-05-12 . A macroevolutionary pathway to megaherbivory . Science . en . 380 . 6645 . 616–618 . 10.1126/science.ade1833 . 37167399 . 2023Sci...380..616S . 258618428 . 0036-8075.
  20. Domning . D.P. . February 2001 . Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean . Palaeogeography, Palaeoclimatology, Palaeoecology . en . 166 . 1–2 . 27–50 . 10.1016/S0031-0182(00)00200-5. 2001PPP...166...27D .
  21. Price . Gilbert J. . Fitzsimmons . Kathryn E. . Nguyen . Ai Duc . Zhao . Jian-xin . Feng . Yue-xing . Sobbe . Ian H. . Godthelp . Henk . Archer . Michael . Hand . Suzanne J. . 2021-11-30 . New ages of the world's largest-ever marsupial: Diprotodon optatum from Pleistocene Australia . Quaternary International . Human Evolution in the Asia-Pacific Realm: Proceedings of the 1st Asia-Pacific Conference on Human Evolution . 603 . 64–73 . 10.1016/j.quaint.2021.06.013 . 2021QuInt.603...64P . 1040-6182.
  22. Book: Palmer, D.. 1999. The Marshall Illustrated Encyclopedia of Dinosaurs and Prehistoric Animals. Marshall Editions. London. 208. 1-84028-152-9.
  23. Saarinen . Juha . Karme . Aleksis . June 2017 . Tooth wear and diets of extant and fossil xenarthrans (Mammalia, Xenarthra) – Applying a new mesowear approach . Palaeogeography, Palaeoclimatology, Palaeoecology . en . 476 . 42–54 . 10.1016/j.palaeo.2017.03.027. 2017PPP...476...42S .
  24. van Geel . Bas . van Leeuwen . Jacqueline F.N. . Nooren . Kees . Mol . Dick . den Ouden . Natasja . van der Knaap . Pim W.O. . Seersholm . Frederik V. . Rey-Iglesia . Alba . Lorenzen . Eline D. . January 2022 . Diet and environment of Mylodon darwinii based on pollen of a Late-Glacial coprolite from the Mylodon Cave in southern Chile . Review of Palaeobotany and Palynology . en . 296 . 104549 . 10.1016/j.revpalbo.2021.104549. 2022RPaPa.29604549V . 239902623 . free .
  25. Pujos . François . Gaudin . Timothy J. . De Iuliis . Gerardo . Cartelle . Cástor . September 2012 . Recent Advances on Variability, Morpho-Functional Adaptations, Dental Terminology, and Evolution of Sloths . Journal of Mammalian Evolution . en . 19 . 3 . 159–169 . 10.1007/s10914-012-9189-y . 1064-7554. 11336/69736 . 254701351 . free .
  26. Stock . Chester . 1942-05-29 . A Ground Sloth in Alaska . Science . en . 95 . 2474 . 552–553 . 10.1126/science.95.2474.552 . 0036-8075.
  27. 10.1016/j.quaint.2012.03.014. Geographic variation of diet and habitat of the Mexican populations of Columbian Mammoth (Mammuthus columbi). Quaternary International. 276–277. 8–16. 2012. Pérez-Crespo . V. C. A. N. . Arroyo-Cabrales . J. N. . Benammi . M. . Johnson . E. . Polaco . O. J. . Santos-Moreno . A. . Morales-Puente . P. . Cienfuegos-Alvarado . E. . 2012QuInt.276....8P.
  28. Malhi . Yadvinder . Doughty . Christopher E. . Galetti . Mauro . Smith . Felisa A. . Svenning . Jens-Christian . Terborgh . John W. . 2016-01-25 . Megafauna and ecosystem function from the Pleistocene to the Anthropocene . Proceedings of the National Academy of Sciences . 113 . 4 . 838–846 . 10.1073/pnas.1502540113 . free . 26811442 . 0027-8424. 4743772 . 2016PNAS..113..838M .
  29. Koch . PL . Barnosky . AD . 2006 . Late Quaternary extinctions: state of the debate . Annual Review of Ecology, Evolution, and Systematics . 37 . 215–250 . 10.1146/annurev.ecolsys.34.011802.132415.
  30. Gill . Jacquelyn L. . 2014 . Ecological impacts of the late Quaternary megaherbivore extinctions . New Phytologist . 201 . 4 . 1163–1169 . 10.1111/nph.12576 . 24649488 . 0028-646X.
  31. Book: Martin, P. S. . The last 10,000 years: A fossil pollen record of the American Southwest . Univ. Ariz. Press . 1963 . 978-0-8165-1759-6 . Tucson, AZ . 61–86.
  32. Book: Martin, P. S. . Pleistocene extinctions: The search for a cause . Yale Univ. Press . 1967 . 978-0-300-00755-8 . Martin, P. S. . New Haven . 75–120 . Prehistoric overkill . Wright, H. E..
  33. Book: Martin, P. S. . 1989 . Prehistoric overkill: A global model . Quaternary extinctions: A prehistoric revolution . Martin, P.S. . Klein, R.G. . 354–404 . Tucson, AZ . University of Arizona Press . 978-0-8165-1100-6.
  34. Birks, H.H. . 1973 . West, R.G. . Modern macrofossil assemblages in lake sediments in Minnesota . Oxford . Blackwell Scientific . 0-632-09120-7 . Quaternary plant ecology: the 14th symposium of the British Ecological Society, University of Cambridge, 28–30 March 1972 . Birks, H.J.B..
  35. Book: 'Wildlife' Review . 1989 . U.S. Department of the Interior, Fish and Wildlife Service . en.
  36. Wells . Harry B. M. . Crego . Ramiro D. . Opedal . Øystein H. . Khasoha . Leo M. . Alston . Jesse M. . Reed . Courtney G. . Weiner . Sarah . Kurukura . Samson . Hassan . Abdikadir A. . Namoni . Mathew . Ekadeli . Jackson . Kimuyu . Duncan M. . Young . Truman P. . Kartzinel . Tyler R. . Palmer . Todd M. . 2021 . Experimental evidence that effects of megaherbivores on mesoherbivore space use are influenced by species' traits . Journal of Animal Ecology . en . 90 . 11 . 2510–2522 . 10.1111/1365-2656.13565 . 34192343 . 235698268 . 0021-8790. free . 2021JAnEc..90.2510W .
  37. Book: Owen-Smith, R. Norman . Megaherbivores: The Influence of Very Large Body Size on Ecology . 1988 . Cambridge University Press . 978-0-521-42637-4 . en.
  38. Book: Ray . Justina . Large Carnivores and the Conservation of Biodiversity . Redford . Kent H. . Steneck . Robert . Berger . Joel . 2013-04-09 . Island Press . 978-1-59726-609-3 . 87 . en.
  39. Gheerbrant, E. . 2009 . Paleocene emergence of elephant relatives and the rapid radiation of African ungulates . Proceedings of the National Academy of Sciences of the United States of America . 106 . 26 . 10717–10721 . 10.1073/pnas.0900251106 . 19549873 . 2705600. 2009PNAS..10610717G . free .
  40. More DNA support for a Cetacea/Hippopotamidae clade: the blood-clotting protein gene gamma-fibrinogen. Gatesy, J.. Molecular Biology and Evolution. 1 May 1997. 14. 537–543. 9159931. 5. 10.1093/oxfordjournals.molbev.a025790. free.
  41. Boisserie, Jean-Renaud . Lihoreau, Fabrice . Brunet, Michel . 2005. The position of Hippopotamidae within Cetartiodactyla. . 102 . 5. 1537–1541. 10.1073/pnas.0409518102. 15677331 . 547867. 2005PNAS..102.1537B . free .
  42. Chen . Lei . Qiu . Qiang . Jiang . Yu . Wang . Kun . Lin . Zeshan . Li . Zhipeng . Bibi . Faysal . Yang . Yongzhi . Wang . Jinhuan . Nie . Wenhui . Su . Weiting . Liu . Guichun . Li . Qiye . Fu . Weiwei . Pan . Xiangyu . 5 . 2019-06-21 . Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits . Science . en . 364 . 6446 . 10.1126/science.aav6202 . 31221828 . 2019Sci...364.6202C . 0036-8075.
  43. Ripple . William J. . Newsome . Thomas M. . Wolf . Christopher . Dirzo . Rodolfo . Everatt . Kristoffer T. . Galetti . Mauro . Hayward . Matt W. . Kerley . Graham I. H. . Levi . Taal . Lindsey . Peter A. . Macdonald . David W. . Malhi . Yadvinder . Painter . Luke E. . Sandom . Christopher J. . Terborgh . John . 5 . May 2015 . Collapse of the world's largest herbivores . Science Advances . 1 . 4 . e1400103 . 10.1126/sciadv.1400103 . 2375-2548 . 4640652 . 26601172. 2015SciA....1E0103R .
  44. Schowanek . Simon D. . Davis . Matt . Lundgren . Erick J. . Middleton . Owen . Rowan . John . Pedersen . Rasmus Ø. . Ramp . Daniel . Sandom . Christopher J. . Svenning . Jens-Christian . April 2021 . Lyons . Kathleen . Reintroducing extirpated herbivores could partially reverse the late Quaternary decline of large and grazing species . Global Ecology and Biogeography . en . 30 . 4 . 896–908 . 10.1111/geb.13264 . 2021GloEB..30..896S . 233926684 . 1466-822X.
  45. Book: N. . Owen-Smith . 2013 . https://www.researchgate.net/publication/323825899 . Megaherbivores . 10.1016/B978-0-12-384719-5.00358-0 . Encyclopedia of Biodiversity . Second . 223–229. 9780123847201 .
  46. Marcus . Clauss . R . Frey . B . Kiefer . M. . Lechner-Doll . The maximum attainable body size of herbivorous mammals: Morphophysiological constraints on foregut, and adaptations of hindgut fermenters . 2003 . Oecologia . 136 . 1 . 14–27 . 10.1007/s00442-003-1254-z. 12712314 . 2003Oecol.136...14C . 206989975 .
  47. Ruggiero . Richard G. . March 1991 . Opportunistic predation on elephant calves . African Journal of Ecology . en . 29 . 1 . 86–89 . 10.1111/j.1365-2028.1991.tb00823.x . 1991AfJEc..29...86R . 0141-6707.
  48. Book: Hyvärinen, Olli . Megaherbivores and Earth System Functioning: Landscape-scale Effects of White Rhino Loss on Vegetation, Fire and Soil Carbon Dynamics . 2022 . Swedish University of Agricultural Sciences . 978-91-7760-966-7 . 107 . en.
  49. Gill . Jacquelyn L. . 2013 . Ecological impacts of the late Quaternary megaherbivore extinctions . New Phytologist . 201 . 4 . 1163–1169 . 10.1111/nph.12576 . 24649488.
  50. Bocherens . Hervé . 2018 . The Rise of the Anthroposphere since 50,000 Years: An Ecological Replacement of Megaherbivores by Humans in Terrestrial Ecosystems? . Frontiers in Ecology and Evolution . 6 . 10.3389/fevo.2018.00003 . 2296-701X . free.
  51. Mungi . Ninad Avinash . Jhala . Yadvendradev V. . Qureshi . Qamar . le Roux . Elizabeth . Svenning . Jens-Christian . March 2023 . Megaherbivores provide biotic resistance against alien plant dominance . Nature Ecology & Evolution . en . 7 . 10 . 1645–1653 . 10.1038/s41559-023-02181-y . 2397-334X.
  52. le Roux . Elizabeth . Kerley . Graham I.H. . Cromsigt . Joris P.G.M. . August 2018 . Megaherbivores Modify Trophic Cascades Triggered by Fear of Predation in an African Savanna Ecosystem . Current Biology . 28 . 15 . 2493–2499.e3 . 10.1016/j.cub.2018.05.088 . 30033334 . 0960-9822. free .
  53. Lee . Derek E. . Bond . Monica L. . Kissui . Bernard M. . Kiwango . Yustina A. . Bolger . Douglas T. . 2016-05-11 . Spatial variation in giraffe demography: a test of 2 paradigms . Journal of Mammalogy . 97 . 4 . 1015–1025 . 10.1093/jmammal/gyw086 . 1545-1542.
  54. Book: Bruton, Michael N. . Alternative Life-History Styles of Animals . 2012-12-06 . Springer Science & Business Media . 978-94-009-2605-9 . 447 . en.
  55. Power . R. John . Shem Compion . R.X. . April 2009 . Lion Predation on Elephants in the Savuti, Chobe National Park, Botswana . African Zoology . 44 . 1 . 36–44 . 10.3377/004.044.0104 . 86371484 . 1562-7020.
  56. Thuppil . Vivek . Coss . Richard G. . 2013-10-23 . Wild Asian elephants distinguish aggressive tiger and leopard growls according to perceived danger . Biology Letters . en . 9 . 5 . 20130518 . 10.1098/rsbl.2013.0518 . 1744-9561 . 3971691 . 24026347.
  57. Book: The Behavior Guide to African Mammals: including hoofed mammals, carnivores, primates. Estes, R.. University of California Press. 222–226. 1992. 978-0-520-08085-0.
  58. Larramendi . A. . 2016 . Shoulder height, body mass and shape of proboscideans . Acta Palaeontologica Polonica . 61 . 3 . 537–574 . 10.4202/app.00136.2014 . 0888-8892 . 84294169.
  59. Book: Manlik, Oliver . Reproductive Sciences in Animal Conservation . 2019 . The Importance of Reproduction for the Conservation of Slow-Growing Animal Populations . https://pubmed.ncbi.nlm.nih.gov/31471793/ . Advances in Experimental Medicine and Biology . 1200 . 13–39 . 10.1007/978-3-030-23633-5_2 . 0065-2598 . 31471793. 978-3-030-23632-8 . 201756810 .
  60. Yuan . Rong . Hascup . Erin . Hascup . Kevin . Bartke . Andrzej . 2023-11-01 . Relationships among Development, Growth, Body Size, Reproduction, Aging, and Longevity–Trade-Offs and Pace-Of-Life . Biochemistry (Moscow) . en . 88 . 11 . 1692–1703 . 10.1134/S0006297923110020 . 38105191 . 265507842 . 1608-3040. free . 10792675 .
  61. Encyclopedia: K-selected species . Britannica . 2 April 2017 . John P. . Rafferty.
  62. Trimble . M. J. . Ferreira . S. M. . Van Aarde . R. J. . September 2009 . Drivers of megaherbivore demographic fluctuations: inference from elephants . Journal of Zoology . en . 279 . 1 . 18–26 . 10.1111/j.1469-7998.2009.00560.x . 0952-8369.