List of mathematical constants explained

A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems.[1] For example, the constant π may be defined as the ratio of the length of a circle's circumference to its diameter. The following list includes a decimal expansion and set containing each number, ordered by year of discovery.

The column headings may be clicked to sort the table alphabetically, by decimal value, or by set. Explanations of the symbols in the right hand column can be found by clicking on them.

List

Mathematical constants sorted by their representations as continued fractions

The following list includes the continued fractions of some constants and is sorted by their representations. Continued fractions with more than 20 known terms have been truncated, with an ellipsis to show that they continue. Rational numbers have two continued fractions; the version in this list is the shorter one. Decimal representations are rounded or padded to 10 places if the values are known.

NameSymbolSetDecimal expansionContinued fractionNotes
Zero0

Z

0.00000 00000[0; ]
Golomb–Dickman constant

λ

0.62432 99885[0; 1, 1, 1, 1, 1, 22, 1, 2, 3, 1, 1, 11, 1, 1, 2, 22, 2, 6, 1, 1, …]E. Weisstein noted that the continued fraction has an unusually large number of 1s.
Cahen's constant

C2

R\setminusA

0.64341 05463[0; 1, 1, 1, 2<sup>2</sup>, 3<sup>2</sup>, 13<sup>2</sup>, 129<sup>2</sup>, 25298<sup>2</sup>, 420984147<sup>2</sup>, 269425140741515486<sup>2</sup>, …]All terms are squares and truncated at 10 terms due to large size. Davison and Shallit used the continued fraction expansion to prove that the constant is transcendental.
Euler–Mascheroni constant

\gamma

0.57721 56649[0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, …] Using the continued fraction expansion, it was shown that if is rational, its denominator must exceed 10244663.
First continued fraction constant

C1

R\setminusQ

0.69777 46579[0; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, …]Equal to the ratio

I1(2)/I0(2)

of modified Bessel functions of the first kind evaluated at 2.
Catalan's constant

G

0.91596 55942[0; 1, 10, 1, 8, 1, 88, 4, 1, 1, 7, 22, 1, 2, 3, 26, 1, 11, 1, 10, 1, …] Computed up to terms by E. Weisstein.
One half1/2

Q

0.50000 00000[0; 2]
Prouhet–Thue–Morse constant

\tau

R\setminusA

0.41245 40336[0; 2, 2, 2, 1, 4, 3, 5, 2, 1, 4, 2, 1, 5, 44, 1, 4, 1, 2, 4, 1, …]Infinitely many partial quotients are 4 or 5, and infinitely many partial quotients are greater than or equal to 50.[105]
Copeland–Erdős constant

l{C}CE

R\setminusQ

0.23571 11317[0; 4, 4, 8, 16, 18, 5, 1, 1, 1, 1, 7, 1, 1, 6, 2, 9, 58, 1, 3, 4, …]Computed up to terms by E. Weisstein. He also noted that while the Champernowne constant continued fraction contains sporadic large terms, the continued fraction of the Copeland–Erdős Constant do not exhibit this property.
Base 10 Champernowne constant

C10

R\setminusA

0.12345 67891[0; 8, 9, 1, 149083, 1, 1, 1, 4, 1, 1, 1, 3, 4, 1, 1, 1, 15, {{val|4.57540e165|fmt=none}}, 6, 1, …] Champernowne constants in any base exhibit sporadic large numbers; the 40th term in

C10

has 2504 digits.
One1

N

1.00000 00000[1; ]
Phi, Golden ratio

\varphi

A

1.61803 39887[1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …] The convergents are ratios of successive Fibonacci numbers.
Brun's constant

B2

1.90216 05831[1; 1, 9, 4, 1, 1, 8, 3, 4, 7, 1, 3, 3, 1, 2, 1, 1, 12, 4, 2, 1, …]The nth roots of the denominators of the nth convergents are close to Khinchin's constant, suggesting that

B2

is irrational. If true, this will prove the twin prime conjecture.[106]
Square root of 2

\sqrt2

A

1.41421 35624[1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …]The convergents are ratios of successive Pell numbers.
Two2

N

2.00000 00000[2; ]
Euler's number

e

R\setminusA

2.71828 18285[2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, …] The continued fraction expansion has the pattern [2; 1, 2, 1, 1, 4, 1, ..., 1, 2''n'', 1, ...].
Khinchin's constant

K0

2.68545 20011[2; 1, 2, 5, 1, 1, 2, 1, 1, 3, 10, 2, 1, 3, 2, 24, 1, 3, 2, 3, 1, …] For almost all real numbers x, the coefficients of the continued fraction of x have a finite geometric mean known as Khinchin's constant.
Three3

N

3.00000 00000[3; ]
Pi

\pi

R\setminusA

3.14159 26536[3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, …] The first few convergents (3, 22/7, 333/106, 355/113, ...) are among the best-known and most widely used historical approximations of .

Sequences of constants

NameSymbolFormulaYearSet
Harmonic number

Hn

n
\sum
k=1
1
k
data-sort-value="-400" Antiquitydata-sort-value="3"

Q

Gregory coefficients

Gn

1
n!
1
\int
0

x(x-1)(x-2)(x-n+1)dx=

1
\int
0

\binomxndx

1670data-sort-value="3"

Q

Bernoulli number
\pm
B
n
t
2

\left(\operatorname{coth}

t
2

\pm1\right)=

infty
\sum
m=0
B\pm{
m

tm}{m!}

1689data-sort-value="3"

Q

Hermite constants[107]

\gamman

For a lattice L in Euclidean space Rn with unit covolume, i.e. vol(Rn/L) = 1, let λ(L) denote the least length of a nonzero element of L. Then √γn is the maximum of λ(L) over all such lattices L. data-sort-value="1822" 1822 to 1901data-sort-value="7"

R

Hafner–Sarnak–McCurley constant[108]

D(n)

D(n)=

infty
\prod
k=1
n
\left\{1-\left[1-\prod
j=1
-j
(1-p
k

)\right]2\right\}

data-sort-value="1883" 1883data-sort-value="7"

R

Stieltjes constants

\gamman

{(-1)nn!
2\pi
}\int _^e^\zeta \left(e^+1\right)dx.
data-sort-value="1894"before 1894data-sort-value="7"

R

Favard constants[109]

Kr

4
\pi
infty
\sum\left(
n=0
(-1)n
2n+1

\right)r+1=

4
\pi

\left(

(-1)0(r+1)+
1r
(-1)1(r+1)+
3r
(-1)2(r+1)+
5r
(-1)3(r+1)
7r

+ … \right)

data-sort-value="1902" 1902 to 1965data-sort-value="7"

R

Generalized Brun's Constant

Bn

{\sum\limits
p(
1{p}+1{p+n})}
where the sum ranges over all primes p such that p + n is also a prime
data-sort-value="1919" 1919data-sort-value="7"

R

Champernowne constants

Cb

Defined by concatenating representations of successive integers in base b.
infty
C
n=1
n
n
\left(\sum\lceillogb(k+1)\rceil\right)
k=1
b
1933data-sort-value="5"

R\setminusA

Lagrange number

L(n)

\sqrt{9-4
{mn

2}}

where

mn

is the nth smallest number such that

m2+x2+y2=3mxy

has positive (x,y).
data-sort-value="1957"before 1957data-sort-value="4"

A

Feller's coin-tossing constants

\alphak,\betak

\alphak

is the smallest positive real root of

xk+1=2k+1

(x-1),\beta
k=2-\alphak
k+1-k\alphak
1968data-sort-value="4"

A

Stoneham number

\alphab,c

\sum
n=ck>1
1
bnn

=

infty
\sum
k=1
1
ck
bck
where b,c are coprime integers.
1973data-sort-value="6"

R\setminusQ

Beraha constants

B(n)

2+2\cos\left(2\pi
n

\right)

1974data-sort-value="7"

A

Chvátal–Sankoff constants

\gammak

\limn\toinfty

E[λn,k]
n
1975data-sort-value="7"

R

Hyperharmonic number
(r)
H
n
n
\sum
k=1
(r-1)
H
k
and
(0)
H
n=1
n
1995data-sort-value="3"

Q

Gregory number

Gx

\sum

infty
n=0

(-1)n{

1
(2n+1)x2n+1
} for rational x greater than one.
data-sort-value="1996"before 1996data-sort-value="7"

R

Metallic mean
n+\sqrt{n2+4
}
data-sort-value="1998" before 1998data-sort-value="4"

A

See also

References

Site OEIS Wiki

Bibliography

Further reading

External links

Notes and References

  1. Web site: Weisstein. Eric W.. Constant. 2020-08-08. mathworld.wolfram.com. en.
  2. Web site: Hartl . Michael . 100,000 digits of Tau . Tau Day . 22 January 2023.
  3. Book: Mathematical sorcery: revealing the secrets of numbers. Calvin C Clawson. 2001. 978 0 7382 0496-3. IV. Basic Books.
  4. Fowler and Robson, p. 368.

    Photograph, illustration, and description of the root(2) tablet from the Yale Babylonian Collection

    High resolution photographs, descriptions, and analysis of the root(2) tablet (YBC 7289) from the Yale Babylonian Collection

  5. Book: Figuring Out Mathematics. Vijaya AV. Dorling Kindcrsley (India) Pvt. Lid.. 2007. 978-81-317-0359-5. 15.
  6. Book: Essential Mathematics 9. P A J Lewis. Ratna Sagar. 2008. 9788183323673. 24.
  7. Book: The Princeton Companion to Mathematics. Timothy Gowers. June Barrow-Green. Imre Leade. Princeton University Press. 2007. 978-0-691-11880-2. 316.
  8. .
  9. Kim Plofker (2009), Mathematics in India, Princeton University Press,, pp. 54–56.
  10. Book: Plutarch. Quaestiones convivales VIII.ii. 718ef. And therefore Plato himself dislikes Eudoxus, Archytas, and Menaechmus for endeavoring to bring down the doubling the cube to mechanical operations. 2019-05-24. 2009-11-19. https://web.archive.org/web/20091119061142/http://ebooks.adelaide.edu.au/p/plutarch/symposiacs/chapter8.html#section80. dead.
  11. Book: Koshy . Thomas . Fibonacci and Lucas Numbers with Applications . 2017 . John Wiley & Sons . 9781118742174 . 2 . 14 August 2018 . en.
  12. Book: Mathematics: The New Golden Age. Keith J. Devlin. Columbia University Press. 1999. 978-0-231-11638-1. 66.
  13. Book: Two-dimensional self-avoiding walks. Mireille Bousquet-Mélou. CNRS, LaBRI, Bordeaux, France. Mireille Bousquet-Mélou.
  14. Book: The connective constant of the honeycomb lattice √ (2 + √ 2). Hugo Duminil-Copin. Stanislav Smirnov. Université de Geneve. 2011. amp.
  15. 1301.6293. math.MG. Richard J. Mathar. Circumscribed Regular Polygons. 2013.
  16. Book: Mathematics and the Imagination. E.Kasner y J.Newman.. Conaculta. 2007. 978-968-5374-20-0. 77.
  17. Web site: [<!-- http://www.gap-system.org/~history/PrintHT/e.html -->http://www-history.mcs.st-and.ac.uk/HistTopics/e.html The number ''e'']. O'Connor. J J. Robertson. E F. MacTutor History of Mathematics.
  18. Book: Handbook of Continued Fractions for Special Functions. Annie Cuyt. Annie Cuyt . Vigdis Brevik Petersen. Brigitte Verdonk. Haakon Waadeland. William B. Jones. Springer. 2008. 978-1-4020-6948-2. 182.
  19. Book: A History of Mathematics. Cajori. Florian. 1991. AMS Bookstore. 0-8218-2102-4. 5th. 152. Florian Cajori.
  20. Web site: The number e. O'Connor. J. J.. September 2001. The MacTutor History of Mathematics archive. 2009-02-02. E. F.. Robertson.
  21. Book: L-Functions and Arithmetic. J. Coates. Martin J. Taylor. Cambridge University Press. 1991. 978-0-521-38619-7. 333.
  22. 0806.4410. math.CA. Robert Baillie. Summing The Curious Series of Kempner and Irwin. 2013.
  23. Book: Consideratio quarumdam serierum, quae singularibus proprietatibus sunt praeditae. Leonhard Euler. 1749. 108.
  24. Book: Handbook of Continued Fractions for Special Functions. Annie Cuyt. Vigdis Brevik Petersen. Brigitte Verdonk. Haakon Waadelantl. William B. Jones.. Springer. 2008. 978-1-4020-6948-2. 188.
  25. Book: Orbital Mechanics for Engineering Students. Orbital Mechanics for Engineering Students. Howard Curtis. Elsevier. 2014. 978-0-08-097747-8. 159.
  26. Book: Théorie et tables d'une nouvelle fonction transcendante. Johann Georg Soldner. J. Lindauer, München. 1809. 42. fr.
  27. Book: Adnotationes ad calculum integralem Euleri. Lorenzo Mascheroni. Petrus Galeatius, Ticini. 1792. 17. la.
  28. Book: An Atlas of Functions: With Equator, the Atlas Function Calculator. Keith B. Oldham. Jan C. Myland. Jerome Spanier. Springer. 2009. 978-0-387-48806-6. 15.
  29. Book: Nielsen, Mikkel Slot.. Undergraduate convexity : problems and solutions. July 2016. 9789813146211. 162. World Scientific . 951172848.
  30. Book: Errata and Addenda to Mathematical Constants. Steven Finch. Harvard.edu. 2014. 2013-12-17. https://web.archive.org/web/20160316175639/http://www.people.fas.harvard.edu/~sfinch/csolve/erradd.pdf. 2016-03-16. dead.
  31. Book: Mathematical Traveler: Exploring the Grand History of Numbers. Calvin C. Clawson. Perseus. 2003. 978-0-7382-0835-0. 187.
  32. Web site: Waldschmidt . Michel . 2021 . Irrationality and transcendence of values of special functions. .
  33. Amoretti . F. . Sur la fraction continue [0,1,2,3,4,...] ]. Nouvelles annales de mathématiques . 1855 . 1 . 14 . 40–44 .
  34. Book: Modular Forms: A Classical and Computational Introduction. L. J. Lloyd James Peter Kilford. Imperial College Press. 2008. 978-1-84816-213-6. 107.
  35. Book: Number Theory: Volume II: Analytic and Modern Tools. Henri Cohen. Springer. 2000. 978-0-387-49893-5. 127.
  36. Book: Series Associated With the Zeta and Related Functions. H. M. Srivastava. Choi Junesang. Kluwer Academic Publishers. 2001. 978-0-7923-7054-3. 30.
  37. Book: Mémoire sur la transformation des séries, et sur quelques intégrales définies, Comptes rendus hebdomadaires des séances de l'Académie des sciences 59. E. Catalan. Kluwer Academic éditeurs. 1864. 618.
  38. Book: Single Variable Calculus: Concepts and Contexts. James Stewart. Brooks/Cole. 2010. 978-0-495-55972-6. 314.
  39. Book: Gamma: Exploring Euler's Constant. Julian Havil. Princeton University Press. 2003. 9780691141336. 64.
  40. Book: Errata and Addenda to Mathematical Constants. Steven Finch. Harvard.edu. 2014. 59. 2013-12-17. https://web.archive.org/web/20160316175639/http://www.people.fas.harvard.edu/~sfinch/csolve/erradd.pdf. 2016-03-16. dead.
  41. Book: Osborne, George Abbott. An Elementary Treatise on the Differential and Integral Calculus. Leach, Shewell, and Sanborn. 1891. 250.
  42. Book: Series representations for some mathematical constants. Yann Bugeaud. 2004. 978-0-521-82329-6. 72. Cambridge University Press .
  43. Book: The Penguin Dictionary of Curious and Interesting Numbers. David Wells. David G. Wells. Penguin Books Ltd.. 1997. 9780141929408. 4.
  44. Book: Tijdeman, Robert. Mathematical Developments Arising from Hilbert Problems. American Mathematical Society. 1976. 0-8218-1428-1. Felix E. Browder. Felix Browder. Proceedings of Symposia in Pure Mathematics. XXVIII.1. 241–268. On the Gel'fond–Baker method and its applications. 0341.10026. Robert Tijdeman.
  45. Book: Precalculus: With Unit Circle Trigonometry. David Cohen. Thomson Learning Inc.. 2006. 978-0-534-40230-3. 328.
  46. Book: Quadrature Theory: The Theory of Numerical Integration on a Compact Interval. Helmut Brass. Knut Petras. AMS. 2010. 978-0-8218-5361-0. 274.
  47. Book: Ángulo áureo.
  48. Book: CRC Concise Encyclopedia of Mathematics, Second Edition. Eric W. Weisstein. CRC Press. 2002. 9781420035223. 1356.
  49. Book: Prime Numbers: A Computational Perspective. Richard E. Crandall. Carl B. Pomerance. Springer. 2005. 978-0387-25282-7. 80.
  50. Book: Nielsen – Ramanujan (costanti di). Mauro Fiorentini.
  51. Book: Volumes of Hyperbolic 3-Manifolds. Steven Finch. Harvard University. https://web.archive.org/web/20150919160427/http://www.people.fas.harvard.edu/~sfinch/csolve/hyp.pdf. 2015-09-19. dead.
  52. Book: Approximation Theory and Approximation Practice. Lloyd N. Trefethen. SIAM. 2013. 978-1-611972-39-9. 211.
  53. Agronomof . M. . 1914 . Sur une suite récurrente. . Mathesis . 4 . 125–126.
  54. Book: Thomas Koshy . Elementary Number Theory with Applications . Elsevier . 2007 . 978-0-12-372-487-8 . 119.
  55. Book: Professor Stewart's Cabinet of Mathematical Curiosities. Ian Stewart. Birkhäuser Verlag. 1996. 978-1-84765-128-0.
  56. Book: CRC Concise Encyclopedia of Mathematics, Second Edition. Eric W. Weisstein. CRC Press. 2003. 978-1-58488-347-0. 1688.
  57. Web site: Engineering Statistics Handbook: Confidence Limits for the Mean . 2008-02-04 . National Institute of Standards and Technology . Although the choice of confidence coefficient is somewhat arbitrary, in practice 90%, 95%, and 99% intervals are often used, with 95% being the most commonly used. . https://web.archive.org/web/20080205120031/http://www.itl.nist.gov/div898/handbook/eda/section3/eda352.htm . 5 February 2008 . dead . dmy-all.
  58. 10.1080/03610920802255856. Swift. MB. Comparison of Confidence Intervals for a Poisson Mean – Further Considerations. Communications in Statistics – Theory and Methods. 2009 . 38. 5. 748–759. 120748700 . In modern applied practice, almost all confidence intervals are stated at the 95% level..
  59. Book: Errata and Addenda to Mathematical Constants. Steven Finch. Harvard.edu. 2014. 53. 2013-12-17. https://web.archive.org/web/20160316175639/http://www.people.fas.harvard.edu/~sfinch/csolve/erradd.pdf. 2016-03-16. dead.
  60. Book: CRC Concise Encyclopedia of Mathematics. Eric W. Weisstein. Crc Press. 2002. 9781420035223. 1212.
  61. Horst Alzer. 2002. Journal of Computational and Applied Mathematics, Volume 139, Issue 2. Journal of Computational and Applied Mathematics. 139. 2. 215–230. 10.1016/S0377-0427(01)00426-5. free.
  62. Book: SOME ASYMPTOTIC FORMULAS IN THE THEORY OF NUMBERS. ECKFORD COHEN. University of Tennessee. 1962. 220.
  63. Book: Computation, Physics and Beyond. Michael J. Dinneen. Bakhadyr Khoussainov. Prof. Andre Nies. Springer. 2012. 978-3-642-27653-8. 110.
  64. Book: Distribution Theory of Algebraic Numbers. Pei-Chu Hu, Chung-Chun. Hong Kong University. 2008. 978-3-11-020536-7. 246.
  65. Book: Gamma: Exploring Euler's Constant. Julian Havil. Princeton University Press. 2003. 9780691141336. 161.
  66. Book: Continued Fractions. Aleksandr I͡Akovlevich Khinchin. Courier Dover Publications. 1997. 978-0-486-69630-0. 66.
  67. 1002.4171. Marek Wolf. Two arguments that the nontrivial zeros of the Riemann zeta function are irrational. Computational Methods in Science and Technology. 2018. 24. 4. 215–220. 10.12921/cmst.2018.0000049. 115174293.
  68. Book: Distribution Modulo One and Diophantine Approximation. Yann Bugeaud. Cambridge University Press. 2012. 978-0-521-11169-0. 87.
  69. Book: Stealth Ciphers. Laith Saadi. Trafford Publishing. 2004. 978-1-4120-2409-9. 160.
  70. Book: Handbook of continued fractions for special functions. Annie Cuyt. Viadis Brevik Petersen. Brigitte Verdonk. William B. Jones. Springer Science. 2008. 978-1-4020-6948-2. 190.
  71. Book: Discrete Geometry. Andras Bezdek. Marcel Dekkcr, Inc.. 2003. 978-0-8247-0968-6. 150.
  72. Lowe. I. J.. 1959-04-01. Free Induction Decays of Rotating Solids. Physical Review Letters. en. 2. 7. 285–287. 10.1103/PhysRevLett.2.285. 1959PhRvL...2..285L . 0031-9007.
  73. Book: My Numbers, My Friends: Popular Lectures on Number Theory. Paulo Ribenboim. Springer. 2000. 978-0-387-98911-2. 66.
  74. Book: Constructive, Experimental, and Nonlinear Analysis. Michel A. Théra. CMS-AMS. 2002. 978-0-8218-2167-1. 77.
  75. Book: Continued Fraction Transformation. Steven Finch. Harvard University. 2007. 7. 2015-02-28. https://web.archive.org/web/20160419114446/http://www.people.fas.harvard.edu/~sfinch/csolve/kz.pdf. 2016-04-19. dead.
  76. Book: Lieb's Square Ice Theorem. Robin Whitty.
  77. Book: Averages of exponents in factoring integers. Ivan Niven.
  78. Book: Class Number Theory. Steven Finch. Harvard University. 2005. 8. 2014-04-15. https://web.archive.org/web/20160419150530/http://www.people.fas.harvard.edu/~sfinch/csolve/clss.pdf. 2016-04-19. dead.
  79. Book: Tools for visualizing real numbers.. Francisco J. Aragón Artacho. David H. Baileyy. Jonathan M. Borweinz. Peter B. Borwein. 2012. 33. 2014-01-20. 2017-02-20. https://web.archive.org/web/20170220175429/https://carma.newcastle.edu.au/jon/tools1.pdf. dead.
  80. Book: Papierfalten. 1998.
  81. Book: Numerical Constants. Gérard P. Michon. Numericana. 2005.
  82. Book: Chaos: An Introduction to Dynamical Systems. Kathleen T. Alligood. Springer. 1996. 978-0-387-94677-1.
  83. Book: The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes. David Darling. Wiley & Sons inc.. 2004. 978-0-471-27047-8. 63.
  84. Book: Mathematical Constants. registration. Schmutz.. Steven R. Finch. Cambridge University Press. 2003. 978-3-540-67695-9. 479.
  85. Book: CRC Concise Encyclopedia of Mathematics, Second Edition. Eric W. Weisstein. CRC Press. 2003. 978-1-58488-347-0. 151.
  86. Waldschmidt, M. "Nombres transcendants et fonctions sigma de Weierstrass." C. R. Math. Rep. Acad. Sci. Canada 1, 111-114, 1978/79.
  87. Book: Orthogonal and diagonal dimension fluxes of hyperspherical function. Dusko Letic. Nenad Cakic. Branko Davidovic. Ivana Berkovic. Springer.
  88. Book: Chaos in Electric Drive Systems: Analysis, Control and Application. K. T. Chau. Zheng Wang. John Wiley & Son. 201. 978-0-470-82633-1. 7.
  89. Book: Mathematical Constants. registration. Steven R. Finch. Cambridge University Press. 2003. 978-3-540-67695-9. 238.
  90. Book: Mathematics Frontiers. Facts On File, Incorporated. 1997. 978-0-8160-5427-5. 46. Infobase .
  91. Book: Mathematical Constants. Steven R. Finch. 2003. 978-3-540-67695-9. 110. Cambridge University Press .
  92. Book: CRC Concise Encyclopedia of Mathematics, Second Edition. Eric W. Weisstein. CRC Press. 2003. 978-1-58488-347-0. 151.
  93. Book: RANDOM FIBONACCI SEQUENCES AND THE NUMBER 1.13198824.... DIVAKAR VISWANATH. MATHEMATICS OF COMPUTATION. 1999.
  94. Book: k-Automatic Reals. Christoph Lanz. Technischen Universität Wien.
  95. Book: Analytic Number Theory. J. B. Friedlander. A. Perelli. C. Viola. D.R. Heath-Brown. H.Iwaniec. J. Kaczorowski. Springer. 2002. 978-3-540-36363-7. 29.
  96. Book: Unified algorithms for polylogarithm, L-series, and zeta variants. Richard E. Crandall. perfscipress.com. 2012. https://web.archive.org/web/20130430193005/http://www.perfscipress.com/papers/UniversalTOC25.pdf. 2013-04-30. dead.
  97. 0912.3844. math.CA. RICHARD J. MATHAR. NUMERICAL EVALUATION OF THE OSCILLATORY INTEGRAL OVER exp(I pi x)x^1/x BETWEEN 1 AND INFINITY. 2010.
  98. Book: Root constant. M.R.Burns. Marvin Ray Burns. 1999.
  99. [oeis:wiki/MRB constant|MRB constant]
  100. Book: Hardy, G. H. . An introduction to the theory of numbers . 2008 . Oxford University Press . E. M. Wright, D. R. Heath-Brown, Joseph H. Silverman . 978-0-19-921985-8 . 6th . Oxford . 214305907.
  101. Jesus Guillera. Jonathan Sondow. 2008. Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent. The Ramanujan Journal. 16. 3. 247–270. math/0506319. 10.1007/s11139-007-9102-0. 119131640.
  102. Book: Gazeta Matemetica Seria a revista de cultur Matemetica Anul XXV(CIV)Nr. 1, Constante de tip Euler generalízate. Andrei Vernescu. 2007. 14.
  103. Book: Electrical Capacitance. Steven Finch. Harvard.edu. 2014. 1. 2015-10-12. https://web.archive.org/web/20160419150944/http://www.people.fas.harvard.edu/~sfinch/csolve/capa.pdf. 2016-04-19. dead.
  104. Ransford . Thomas . 10.1007/BF03321780 . 2 . Computational Methods and Function Theory . 2791324 . 555–578 . Computation of logarithmic capacity . 10 . 2010.
  105. Bugeaud . Yann . Queffélec . Martine . On Rational Approximation of the Binary Thue-Morse-Mahler Number . Journal of Integer Sequences . 2013 . 16 . 13.2.3 .
  106. Wolf . Marek . 22 February 2010 . Remark on the irrationality of the Brun's constant . 1002.4174 . math.NT.
  107. Web site: Hermite Constants .
  108. Book: Process Algebra and Probabilistic Methods.. Holger Hermanns. Roberto Segala. Springer-Verlag. 2000. 978-3-540-67695-9. 270.
  109. Web site: Favard Constants .